க. பொ. த உயர்தரம்

> இரசாயனம் II விற விடைகள்

Cl 07+14,

NY. C. Rawin

க பொ. த. (உயர்து) பரீட்சை 1972 - 1973 விருக்கள்

> மாதிரி வினுப் பத்திரம் (அமைப்புக் கட்டுரை — கட்டுரை)

சேதன இரசாயனம்

ஆக்கியோன் :

தப்பையா சத்திஸ்வரன் இரசாயினி, சிமெந்துக் கூட்டுத்தாபனம்

1974

விற்பனே உரிமையாளர்:

வட – இலங்கைத் தமிழ்நூற் பதிப்பகம், சுன்னுகம்

க. பொ. த உயர்தரம்

இரசாயனம் II விற விடைகள்

க பொ. த. (உயர்தர) பரீட்சை 1972 - 1973 விஞக்கள்

> **மாதிரி வினுப் பத்திரம்** (அமைப்புக் கட்டுரை — கட்டுரை)

> சேதன இரசாயனம்

ஆக்கியோன் :

தம்பையா சத்தீஸ்வரன் இரசாயினி, சிமெந்துக் கூட்டுத்தாபனம்

கல்விப் பொதுத் தராதரப்பத்திர 1972—1973 பரீட்சைகளின் விஞப்பத்திரங்களே அச்சிட்டு வெளியிடுவதற்கு அநுமதி வழங்கிய கல்வித் திணக்களப் பரீட்சை அதிகாரியவர்களுக்கு எனது நன்றியைத் தெரிவித்துக் கொள்ளுகின்றேன்.

— த. சத்திஸ்வரன்.

1974

பதிப்புரிமை

விற்பண உரிமையாளர்:

வட – இலங்கைத் தமிழ்நூற் பதிப்பகம், சுன்னுகம்

கல்விப் பொதுத் தராதரப் பத்திர (உயர்தர)ப பயிற்சிப் பரீட்சை, ஏப்பிரில் 1973

இரசாய<mark>ன</mark>ம் II

பகுதி B கட்டுரை

Gfa BI

- 1: (﴿) பின்வரும் சேர்வைகளில் மங்கனீசின் ஒட்சியேற்ற எண் என்ன?
 - (i) MnO₂, (ii, MnSO₄, (iii) K₂MnO₄, (iv) KMnO₄.

 மங்கனீசின் ஒட்சியேற்ற எண்களேக் கருத்திற்கொண்டு, அமில, நடுநிலே ஊடகங்களில் ஒட்சி யேற்றியாகத் தொழிற்படும்பொழுது, KMnO₄இன் சமவலுநிறைகளேக் கணிக்க.
 - (ஆ) 1 கிராம் $\mathrm{KMnO_4}$ ஐ அமில ஊடகத்தில் பூரணமாகத் தாழ்த்துவதற்குத் தேவையான $\mathrm{SO_2}$ இன் கணவளவை நி. வெ. அ. இல் கணிக்க.
 - (இ) 1 கிராம் KI ஐ நடுநிலே ஊடகத்தில் அயடஞைக ஒட்சியேற்றுவதற்குத் தேவையான KMnO₄இன் நிறையைக் கணிக்க.
 - (ஈ) SO₂, H₂S ஆகிய இரண்டு தாழ்த்திகளேயும் கொண்டுள்ள நீரமிலக்கரைசலின், SO₂, H₂S செறிவு களேக் KMnO₄ பயன்படுத்தித் துணிவதற்கான, ஒரு கணமான முறையொன்றைத் திட்டமிடுக. [K=39, Mn=55, O=16, I=127, S=32]

வீடை (1)

அமில் ஊடகம்:

- ் 1 மூல் KMnO₄ அமில ஊடகத்தில் Mn⁺⁺ ஆகத் தாழ்த்தப்படும்பொழுது ஒட்சியேற்ற எண் மாற்றம் **=** 5.
- ். அமில ஊடகத்தில் KMnO₄இன் சமவலு நிறை = 39+55+64 = 31.6.

நடுநிலேயான ஊடகம் ச

- :. 1மூல் MnO4, நடுநிலே ஊடகத்தில் MnO2 ஆகத் தாழ்த்தப்படும்பொழுது, ஒட்கியேற்ற எண் மாற்றம் 🛥 3.
- ். நடுநிலேயான ஊடகத்தில் KMnO₄ இன் சமவலுநிறை = $\frac{39+55+64}{3} = 52\cdot 67$.

(ஆ) முறை I

1 கிராம் ச**மவ**லு $\mathrm{KMnO_4}$ ஐ தாழ்த்த 1 கிராம் சமவலு SO_2 தேவைப்படும்.

$$SO_2$$
 இன் சமவலு நிறை = $\frac{32+32}{2}$ = 32

- ். அமி**ல ஊடகத்**தில் 31 6 கிராம் KMnO₄ ஐ முற்றுக**த் தாழ்த்த** 32 கிராம் SO₂ தேவைப் படும்.
- ். 1 கிராம் KMnO₄ ஐ அமில ஊடகத்தில் முற்றுகத் தாழ்த்துவதற்கு $\frac{32}{31\cdot6}$ கிராம் SO₂ தேவைப்படும்.

1 மூல் SO₂ அல்லது £4 கிராம் SO₂ நி. வெ. அ. இல் 22·4 இலீ. ஐக் கொள்ளும்:

:. 32 கிராம் SO₂ நி. வெ. அ. இல் அடைக்கும் கனவளவு

$$= \frac{22\cdot4}{64} \times \frac{32}{31\cdot6} = \frac{11\cdot2}{31\cdot6} \quad \text{gos.}$$

$$= 354\cdot4 \text{ id. Test.}$$

முறை பி:

 $2 \text{ MnO}_{4}^{-} + 5 \text{SO}_{2} + 2 \text{H}_{2} \text{O} \longrightarrow 2 \text{Mn}^{++} + 5 \text{SO}_{4} + 4 \text{H}^{+}$ சமன்பாட்டின் வழி,

2 மூல் KMnO4 ஐ. அமில ஊடகத்தில் தாழ்த்தத் தேவைப்படும் SO2 = 5மூல்.

- ். 2 × 158 கிராம் KMnO4 ஐ அமில ஊடகத்தில் முற்றுகத் தாழ்த்தத் தேவைப்படும் SO₂ = 5 மூல்
- ். 1 கிராம் KMnO₄ ஐ அமில ஊடகத்தில் தாழ்த்தத் தேவையான SO₂ = 5

$$:= \frac{5}{2 \times 158}$$
 மூல் SO_2 நி. வெ. அ. இல் அடைக்கும் கனவேளவு $= \frac{22 \cdot 4 \times 5}{2 \times 158}$ $= \frac{11 \cdot 2}{31 \cdot 6}$ இலீ $= 354 \cdot 4$ மி. இலீ.

(இ) முறை I:

1 கிராம் சமவலு KI ஐ, 1 கிராம் சமவலு KMnO₄ ஒட்சியேற்றும்.

தாக்கத் ${f S}$ ன்பொழுது ${f I}$ ் அயன். ${f I}_2$ ஆக மாற்றப்படும்.

I இல், I இன் ஒட்சியேற்ற எண் 🚥 🗕 🚉

I₂ இல், I இன் ஒட்சியேற்ற எண் = O.

- ். ஒட்சி**யேற்**ற எண் மாற்றம் 😑 1.
- \therefore KI இன் சமவலு நிறை = $\frac{39+127}{1}$ = 166.

நடுநில் ஊடகத்தில் 166 கிராம் KI ஐ முற்றுக ஒட்சியேற்ற 52·67 கிராம் KMnO₄ தேவைப்படும்.

். 1 கிராம் KI ஐ முற்றுக ஒட்சியேற்ற தேவையான KMnO இன் நிறை = $\frac{52 \cdot 67}{166}$ = 0·3173 கிராம் முறை 11:

$$2 \text{ MnO}_4 + 4 \text{ H}_2 \text{O} + 6 \text{ I} \longrightarrow 2 \text{ MnO}_2 + 8 \text{ OH}^- + 3 \text{ I}_2$$
 சமன்பாட்டின் வழி.

6 மூல் KI ஐ. நடுநிலே ஊடகத்தில் தாழ்த்த, 2 மூல் KMnO 4 தேவை.

6 × 166 கிராம் KI ஐ-தாழ்த்த 2 × 158 கிராம் KMnO4 தேவை.

$$1$$
 கிராம் K I ஐ தாழ்த்த $\dfrac{z imes 158}{6 imes 166}$ கிராம் $KMnO_4$ தேவை. $=0.3173$ கிராம்.

(ஈ) தெரிந்த கணவளவு கரைசலே (25 மி. லீற்) எடுத்து, நியமிக்கப்பட்ட KMnO4 கரைசலுடன் வலு**ப்பா**ர்த்து, கரைசலிலுள்ள SO₂, H₂S ஆகியவற்றின் மொத்தச் செறிவுகளே அறியலாம். [N நேர் KMnO4 இன் V மி. இலி. தேவைப்பட்டது என்க.]

> பின்னர் மேலும் 25 மி. லீற். கரைசலே எடுத்து, மிகையான Pb (NO₃), **கரைசலே** (அல்லது கூட்டம் II மூலகங்களின் அயண்களேக் கொண்ட உப்புக்கரைசலே) சேர்க்கும் பொழுது அமில ஊடகத்தில் H₂S முற்றிலும் PbS ஆக் வீழ்படிவாக்கப்படும்.

$$Pb^{++} + H_2S \longrightarrow PbS + 2H^+$$

பின்னர் விளேவுக்கரைசலே KMnO, உடன் வெலுப்பார்த்தலின் மூலம் கரைசலில் உள்ள SO, இன் செறிவைக் கணிக்கலாம். (தேவைப்பட்ட N நேர் KMnO, இன் கணவளவை Vo மி. லீற், என்க.)

கரைசேலில் உள்ள SO_2 , H_2S என்பவற்றின் மொத்தச் செறிவு $\frac{N \times V \times 1000}{1000 \times 25}$ கி. சமவலு இலீ. $^{-1}$;

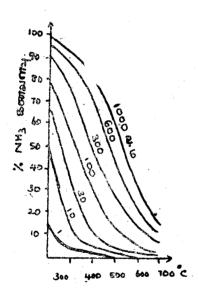
கரைசலில் உள்ள
$$SO_2$$
 இன் செறிவு $=\frac{N\times V_0\times 1000}{1000\times 25}$ கி. சமவலு இலீ. 1 .

கரைசலில் உள்ள H₂S இன் செறிவு —
$$\left[\frac{N \, V}{25} - \frac{N \, V_0}{25} \right]$$
 கி. சமவலு இலீ. ு

$$=\frac{N}{25}(V-Vo)$$
 கி. சமவனு இலீ. $^{-1}$

- 2. பின்வருவல பற்றிச் சிறு விளக்கங்கள் தருக:
 - (அ) அமோனியாவின் கைத்தொழிற் தயாரிப்பு
 - (ஆ) சல்பூரிக்கமிலத்தின் கைத்தொழிற் தயாரிப்பு [விபரமான விளக்கப்படங்கள் வேண்டியதில்லே]

aim (2)


(அ) அமோனியாவின் பெரும்படி ஆக்கல்:

திரவ வளியைப் பகுதிபடக் காய்ச்சி வடித்தல் மூலம் பெறப்படும் நைதரசனும், நீர் வாயுவி லிருந்து பெறப்படும் ஐதரசனும் 1:3 என்னும் மூல் விகிதத்தில் கலக்கப்பட்டு, 500° — 550°C சிறப்பு வெப்பநிலேயில், Fe, Mo, Ga என்பவற்றை அல்லது Fe, O,, K,O, Al,O, என்பவை ஊக்கிகளாகப் பயன்படுத்தப்பட்டு 200—250 வளிமண்டல அமுக்கத்திற்கு அமுக்கும்பொழுது அமோனியா உற்பத்தியாகும்.

$$N_{2}$$
 (a) + $3H_{2}$ (a) \rightarrow 2NH₂ (a) + 22 S. sGenff:

பௌதிக இரசாயனத் தத்துவங்கள் :

் (i) வெப்பநிலே :

அமோனியா உற்பத்தி ஆகும்பொழுது வெப்பம் வெளிப்படுவ தால், அமோனியாவின் ஆக்கத்தை அதிகரிப்பதற்கு, வெப்ப நிலே குறைக்கப்படல் வேண்டும். ஆஞல் தாக்கவேகத்தை அதிகரிப்பதற்கு, வெப்பநிலே உயர்த்தப்படல் வேண்டும். எனவே இவ்விரு நிபந்தனேகளுக்கும் உட்படக் குறைந்த நேரத்தில் கூடிய அமோனியாவை உற்பத்தி செய்வதற்கு, அதாவது அமோனியாவின் வினேத்திறவேக் கூட்டுவதற்குச் சிறப்பு வெப்ப நிலே 550°C பயன்படுத்தப்படும்.

(ii) ஊக்கி: உற்பத்தியை அதிகரிப்பதற்குச் சிறப்பு வெப்ப நிலே 550°C பயன்படுத்தப்பட்டபொழுதிலும், தாக்க வேகத்தை அதிகரிப்பதற்கு இவ்வெப்பநிலே போதாது. உயர் வெப்பநிலே விளவைக் குறைப்பதால் வெப்பநிலேயை மேலும் கூட்டமுடி யாது. எனவே Fe, Mo என்பன ஊக்கிகளாகப் பயன்படுத்தப் பட்டு, ஊக்கசத்தி அளிக்கப்பட்டு உற்பத்தித்திறன் மேம்படுத்தப் படும்.

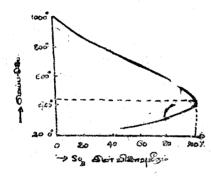
(iii) அமுக்கம் அமோனியா உற்பத்தியாகும்பொழுது ¥ கனவளவு வாயு, 2 கனவளவு ஆகக் குறைக்கப்படுகிறது. எனவே உயர் அமுக்கம் கனவளவு குறையத்தக்கதாகத் தாக்கத்தை நிகழ்த் தும். எனவே, அமுக்க உயர்வு, இக்கனவளவுக் குறைவை ஏற்படுத்தி அமோனியாவின் விளே வைக் கூட்டுகிறது. எனவே 200—250 வளிமண்டல அமுக்கம் பயன்படுத்தப்படும்.

(ஆ) H_2SO_4 இன் பெரும்படி ஆக்கல்:

கந்தகத்தை எரித்துப் பெறப்பட்ட SO, வாயுவும், மாசு அகற்றப்பட்ட வளியும் என்ற மூலர் விகிதத்தில் கலக்கப்பட்டு, 450°C சிறப்பு வெப்பநிஃவில் Pt அல்லது V₂O, என்னும் ஊக்கியின்மீது, சாதாரண வளிமண்டல அமுக்கத்தில் செலுத்தும்பொழுது கந்தகவீரொட் சைட்டின் ஊக்க ஒட்சியேற்றத்தால் கந்தகமூ ஒட்சைட்டு விஃோவாக்கப்படும்:

குறிப்பு: இங்கு முதலில் SO₂ வாயுவும், வளியும் கூடிய மின்னமுத்தவேறுபாடு கொண்ட மின்வாய் களே உபயோகித்து நிலேமின் வீழ்படிவாக்கல் (electro static precipitation) மூலம் மாசுக்கள் அகற்றப்பட்டுத் தூயதாக்கப்படும்: அல்லாவிடில், இம்மாசுக்களால் ஊக்கிகள் நஞ்சாக்கப் படும்.

> வூளேவாகும் SO, , 98% H₂SO, இதல் உறிஞ்சப்படும். SO, +H₂SO, ——→ H₂S₂O,


விளேவுக்குக் கணிக்கப்பட்டளவு நீர் சேர்க்கும்பொழுது H₂SO, பெறப்படும்:

$$H_2S_2O_7 + H_2O \longrightarrow 2H_2SO_4$$

- குறிப்பு: (i) SO, ஐ நேரடியாக நீரில் உறிஞ்சுவது சிறந்ததாகாது: காரணம் SO, கரைசலாகும். தாக்கும் வெப்பத்தைக் கக்குவதால் SO, இன் கரைதிறன் குறைக்கப்படும்.
 - (ii) SO, ஐ உறிஞ்சுவதற்குப் பய**ன்படுத்**திய H₂SO, திரும்பவும் பெறப்படும்.

பௌதிக இரசாயனத் தத்**துவம்** :

(i) வெப்பநிலே:

SO, உருவாகும்பொழுது வெப்பம் வெளிவிடப்படுகிறது. எனவே SO, இன் உற்பத்தியை அதிகரிப்பதற்கு வெப்பநிலே குறைக்கப்படல் வேண்டும். ஆணுல் தாக்கவேகத்தை அதிகரிப் பதற்கு வெப்பநிலே கூட்டப்படல் வேண்டும். எனவே இல் விரு நிபந்தனேகளுக்கும் உட்பட, குறைந்த நேரத்தில் கூடிய வினேவைப் பெறச் சிறப்பு வெப்பநில் 450°C பயன்படுத்தப்படு கிறது.

- (ii) ஊக்கி: சிறப்பு வெப்பநிஃ பயன்பெடுத்தப்பட்டபோதிலும், தாக்கவேகேத்தை அதிகிப்பதற்கு வெப்பநிஃ போதாமையால், Pt அல்லது V_2O_5 ஊக்கியாகப் பயன்பெடுத்தப்பட்டு ஊக்கசக்தி அளிக்கப்பட்டு உற்பத்தித்திறன் அதிகிிக்கப்படுகிறது.
- (iii) SO₃ உற்பத்தியாகும்பொழுது ³ கனவளவு வாயு, ² கனவளவாகக் குறைக்கப்படுகிறது. எனவே உயர் அமுக்கம் SO₃ இன் உற்பத்தியை அதிகரிக்குமாயினும், சாதாரண வளிமண்டல அமுக்கத் திலேயே கிட்டத்தட்ட முழு SO₂ உம், SO₃ ஆக மாற்றப்படுவதால் ஒரு வளிமண்டல அழுக் கமே பயன்படுத்தப்படுகிறது.
- து, Λ (அ) ஒரு மூல மென்னமிலம் **ஒன்**றையும் **அதன் சோ**டியமு**ப்பையு**ங் கொண்டுள்ள நீர்க்கரைசெல் ஒன்றின் pH பெறுமானம், pH = pKa + மட_{ால} [உப்பு] என்ற சமன்பாட்டினுல் தரப்படும் எனக் காட்டுக.

[இதில் Ka = அமிலத்துண் கூட்டப்பிரிவு மாறிலி, pKa = — \log_{10} K ஆகும்.]

(ஆ) ஒரு மாணவன், தெரியாத கனவளவு நீரில் கரைக்கப்பட்டுள்ள ஒரு தெரியாத அளவு மெண் னமிலமொன்றை எடுத்து, 0·1 N வன்மூலக் கரைசல் ஒன்றுடன் வலுப்பார்க்கிறுன். 20 மி. லீ: மூலக்கரைசல் சேர்க்கப்படும்பொழுது, கரைசலின் pH, 5 ஆக இருக்கிறது. மேலும் 10 மி. லீ: மூலக்கரைசல் சேர்க்கப்படும்பொழுது, pH, 6 ஆக இருக்கின்றது. மென்னமிலத்தின் எத்தனே சமவலுக்கள் எடுக்கப்பட்டதென்பதையும், அதன் கூட்டப்பீரிவு மாறிலியையும் கணிக்க, afm_{\perp} (3)

ஒரு மூல மென் அமிலத்தை HA என்க. இதன் சோடிய உப்பு NaA ஆகும். எனவே கரைசலில் பின்வரும் சமநிலேகள் காணப்படும்.

$$HA \longrightarrow H^+ + A^-$$

$$NaA \longrightarrow Na^+ + A^-$$

HA ஒரு மென்னமிலம் ஆதலால் இதன் அயளுக்கம் குறைவாகும். சோடியம் உப்பு NaA முற்றுன அயன்நிலேயில் காணப்படும். எனவே கரைசலில் செறிந்து காணப்படும், A அயன்களின் பொது அயன் விளேவால் அமிலத்தின் அயளுக்கம் மேலும் குறைக்கப்படும். இதளுல் பின்வரும் எடுகோள்களேக் கொள்வது தவமுகாது.

- (i) கரைசலிலுள்ள முழு A அய**ன்களு**ம் உப்பிலிருந்து பெறப்பட்டது.
 - $\therefore C_{A^-} = C_{NaA}$
- அமிலத்தின் செறிவில் மாற்றமிக்ஃ.
 இணிவுத்தாக்க விதியில்படி, மென்னமிலத்துக்கு,

$$Ka = \frac{C_{H} + C_{A}}{C_{HA}} = C_{H} + \frac{[
ot\! \ \, \dot{}_{\Box} \dot{}_{\Box} \dot{}_{\Box}]}{[
ot\! \ \, \dot{}_{\Box} \dot{}_{\Box} \dot{}_{\Box}]}$$
 $\therefore C_{H} + Ka = \frac{[
ot\! \ \, \dot{}_{\Box} \dot{}_{\Box} \dot{}_{\Box}]}{[
ot\! \ \, \dot{}_{\Box} \dot{}_{\Box} \dot{}_{\Box}]}$

ூ) மேற்கூறப்பட்ட எடுகோள்களின்படி கரைசலில் அயஞைகாது இருக்கும் அமிலத்தின் செறிவு, எடுக்கப்பட்ட அமிலத்தின் செறிவுக்குச் சமஞகும்.

V மி. லீ. கரைசலில் உள்ள அமிலத்தின் அளவை X கிராம் சமவலு என்க. கரைசலிற் காணப்படும் A அயன்களின் செறிவு, வலுப்பார்ப்பின்பொழுது சேர்க்கப்பட்ட மூலத்தின் சம வலுக்களின் எண்ணிக்கைக்குச் சமஞகும்.

மூலம் சேர்க்கப்பட்ட பின்னரும், கரைசல்களின் pH, 7 இலும் குறைவாக (5உம், 6உம்) இருப்பதால், கரைசலில் மிகையான அமிலம் உண்டு. எனவே இக்கரைசல்கள் மென்னமிலத் தாலும் அதன் வன்மூல உப்பாலும் உண்டாக்கப்பட்ட தாங்கற்கரைசல் ஆகும்.

pH = 5ஆக இருக்கும்பொழுது:

சேர்க்கப்பட்ட மூலம் =
$$\frac{0.1 \times 20}{1000}$$
 = 02002 கிராம் சமவலு.

∴ எஞ்சிய அமிலம் = (X — 0 • 002) கி. சமவலு கரைசலின் கனவளவு = (V + 20) மி. லீ.

$$C_{A}$$
 = $\frac{0.002}{V+20}$ இ. சமவலு மி. லீ-1

$$C_{HA} = \frac{X - 0.002}{V + 20}$$
 яз вим м. 66^{-1}

:
$$\frac{[e.iu]}{[subswip]} = \frac{0.002}{X - 0.002}$$

: $5 = pK_a + \omega L_{10} = \frac{0.002}{X - 0.002}$

pH = 6ஆக இருக்கும்பொழுது:

$$C_{A^{-}} = \frac{0 \cdot 003}{V + 30}$$
 கி. சமவலு மி. லீ $^{-1}$
 $C_{HA} = \frac{X - 0 \cdot 003}{V + 30}$ கி. சமவலு மி. லீ $^{-1}$
 $6 = pK_a + \omega L$ $\left[\frac{0 \cdot 003}{X - 0 \cdot 003} \right]$ — B

B-A --->

X = 3·18×10-8 இ. சமவத

சமன்பாடு Aஇல் Xஐ பிரதியீடு செய்தால்,

$$5 = pK_a + \omega L_{10} \left[\frac{0.002}{3.18 \times 10^{-3} - 0.002} \right]$$
 $Ka = 1.7 \times 10^{-5}$ சமவலு இலீ $^{-1}$

B H

C,H,Cl, ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய A, B, C என்னும் மூன்று அலிபற்றிக்குச் சேர்வைகளே வன்மூலம் ஒன்றுடன் தாக்கமுறச் செய்தபொழுது, ஒவ்வொன்றும் C,H, ஐ மூலக்கூற்றுச் சூத்திரமாக வுடையதும், அமோனியாசேர் வெள்ளி நைத்திரேற்றுக் கரைசலுடன் வீழ்படிவைத் தருவதுமான D என்னும் சேர்வையைக் கொடுத்தன.

- A, B, C ஆகியவற்றின் சாத்தியமான கட்டமைப்புக்களேத் தருக.
- D ஐ CH, CH, CO CH, (E) ஆக மாற்றுவதற்குத் தேவையொன சோதன்ப் பொருள்களேத் தருக்.
- E ஐப் போன்று, அதே மூலக்கூற்றுச் சூத்திரத்தையுடைய F என்னும் வேறெரு சேர்வை, நிரம்பிய Na H SO, கரைசலுடன் குலுக்கப்பட்டபொழுது, ஒரு வீழ்படிவைத் தந்தது.
 - (i) **F**என்பது என்ன?
 - (ii) F இலிருந்து Eஐ வேறுபடுத்திக் காண்பதற்கான இரு இரசாயனப் பரிசோ*த*ேனைகளேத் தருக. ஒவ்வொன்றிலும் உமது நோக்கல்களேத் தருக. [சமன்பாடுகள் வேண்டியதில்லே]
- ′சு) E ஐயும், CH, CH, CO. CH, CH, ஐயும் வேறுபடுத்திக் காண்பதற்கான தாக்கிமொன்றின் சமன் பாட்டைத் தருக.

- - (fi) G இல் சமச்சிரற்ற காபன் அணு இருப்பதற்கான சான்று என்ன?

alm_{\perp} (4)

- (a) (i) CH, CH, CH, CH Cl,
 - (ii) CH₃·CH₄· CHCl·CH₂Cl.
 - (iii) CH, CH, CC Cl, CH,
- (ஆ) HgO. H₂ SO, H₂O என்பன.

H
(2) (i) CH, CH, CH,
$$\overset{\downarrow}{C} = 0$$
 And $\overset{\downarrow}{O}$ CH, CH $\overset{\downarrow}{C} = 0$ CH,

- (ii) (a) E இற்கும், F இற்கும் NaOH / I. சேர்க்கும்பொழுது, E யில் மென்மஞ்சள் நிற வீழ் படிவு அயடபோம் தோற்றுவதுடன், அயடபோமுக்குரிய சிறப்பு மணமும் உண்டா கும். ஆஞல் F அயடபோம் தாக்கத்திற்கு இன்மை விடை அளிக்கும்.
 - (b) பீலிங்கின் கரைசலே Fக்குச் சேர்க்கும்பொழுது CU, O, செந்நிற வீழ்படிவு தோன்றும். ஆணுல் E பீலிங்கின் கரைசலுக்கு எதிர்விடையைக் கொடுக்கும்:

(a) (i)
$$C_2 H_5 - C - CH_1$$
 HCN $C_2 H_5 - C$ OH [G]3

- (ii) G இல் காபணே**க்** காபன்அணு சமச்சீரற்றதால், முணேவாக்கப்பட்ட ஒளியைத் திருப்பும். அதாவது ஒளிக்குத் தூண்டலேக் காட்டும். இது 3 உருவங்களில் காணப்படும்,
- (ஆ) (i) குளோரோ அசிற்றுமைட்டின், இலாசைனர் உருகல் வடிதிரவத்தைத் தயாரிக்கும் முறையைச் சுருக்கமாகத் தருக.
 - (ii) இவ் வடிதிரவத்தில் நைதரசன், குளோரின் ஆகியவை இருப்பதை எவ்வாறு காட்டுவீர்?
- (ஆ. பின்வருவனவற்றில் ஏதேனும் இரண்டு பற்றி விளக்குக.
 - (i) 1 முல் அணிலீணே அதன் இது சோடியமுப்பாக மாற்றுவதற்குத் தேவையான நிபந்த*ணே*கள் ச
 - (1) மிகையான HCl, 13.00 600 வியும
- (2) 1:1 (முல்கள் NaNO.
- (3) 5°C தொடக்கம் 10°C வரையுள்ள வெப்பநிலே.
- (ii) அசிற்ரு பீஞேண் [C₈H₈ CO. CH₈] நைத்திரேற்றம் செய்யும்பொழுது பிரதானமாக-மெற்ரு—நைத்ரோ அசிற்ரு பீஞேன் பெறப்படுகி**ன்றது.** [**இதை விளக்குவதற்கு இலத்** திரன் விளேவுகளே (பரிவு விளேவுகளே) பயன்படுத்துக.]
- (iii) அனிலீன் [C,H, NH,] பென்சைல் அமைனிலும் [C,H, CH,NH,] குறைந்த மூலத்தன்மை உடையது: [விளக்குவதற்கு இலத்திரன் விளேவுகளே (பரிவு விளேவுகளே) பயன்படுத்துக].

ண்டை (5)

- (அ) (i) குளோரோ அசிற்ளுமைட்டின் ஒரு மாதிரி எரிகுழாயில் எ**டுக்கப்பட்டு,** உருகிய சோடியத் துடன், சிவப்பு வெப்பநிலே வரும்வரை உருக்கப்பட்டபின், காய்ச்சிவடித்த நீரினுள் இடப்பட்டு, கொதிக்கவைக்கப்பட்டுப் பின்னர் வடிக்கப்படும்.
 - (ii) நைதரசனுக்குப் பரிசோதனே :

மேற் பெறப்பட்ட வடி **திரவத்துக்கு FeSO**,, ஐதான H₃SO, என்பவற்றைச் சேர்த்துக் கொதிக்கவிடும்பொழுது அல்லது பெரிக்குளோரைட்டைச் சேர்க்கும்பொழுது நீலதிற வீழ்படிவு தோன்றும்.

குளோரீனுக்குப் பரிசோதனே :

இலாசைனரின் வடிக்கு, மிகையான HNO, சேர்க்கப்பட்டு, கனவளவு அரைவாகி ஆகுமட்டும் கொதிக்க வைக்கப்பட்டு, வடியில் இருக்கும் CN[—] அயன்கள் HCN வாயுவாக வெளியேற்றப்பட்ட பின்னர் வெள்ளி நைத்திறேற்றுக் கரைசல் சேர்க்கப்படும்பொழுது வெண்ணிற வீழ்படிவு தோன்றும்.

$$Ag^+ + Cl^- \longrightarrow AgCl \downarrow$$

சூறிப்பு: தரப்பட்ட சேர்வையில் நைதரசன் இருப்பதால், இலாசைவரின் வடிதிரவம் தயாரிக்கப் படும்பொழுது CN அயன்கள் வடியில் காணப்படும், இது AgNO, உடன் தாக்கமுற்று வெள்ளி சயணேட்டு வெண்ணிற வீழ்படிவைக் கொடுக்கும். எனவே குளோரினுக்குப் பரி சோத் செய்யப்பட முன்னர், CN அயன்கள் அகற்றப்படவேண்டும்.

(ஆ) 1. மிகையான அமிலம்:

(a) ஈரசோனிய ஆக்கலின்பொழுது, மிகையாக இருக்கும் அனிலீன, அனிலீன் ஐதரோ குளோரைட்டாக மாற்றுவதற்குப் பயன்படும். இதனுல் வினேவாகும் ஈரசோனியம் உப்பு, அனிலீனுடன் தாக்கமுறுவது தவிர்க்கப்படும்.

$$C_6H_5$$
 $\ddot{N}H_9$ + HCl \longrightarrow C_6H_5 $\ddot{N}H_5$ Cl

(b) NaNO, இலிருந்து நைத்திரஸ் அமிலத்தை விளேவாக்கப் பயன்படும்.

- (c) மிகை அமிலம், தாக்க ஊடகத்தை அமிலநிலேயில் வைத்திருப்பதற்குப் பயக்படும்.
- 2. 1 1 apri NaNO2:

1·1 மூல் NaNO, ஐ பயன்படுத்துவதால், ஊடகத்தில் மிகையான HNO, இருக்கும். எனவே ஈரசோனியத்தின் ஆக்கம் முற்றுக்கப்படும்:

3. 5°C — 10°C வெப்பநிலே :

5°C யிலும் குறைந்த வெப்பநிலேயில் தாக்கவேகம் மிகவும் மந்தமரக இருக்கும். 10°C யிலும் மேற்பட்ட வெப்பநிலேயில் ஈரசோனியம் உப்பு பிரிகை அடைந்து பிஞேஃல விளேவாக்கும்.

 $C_6H_5N_2Cl+H_5O-\longrightarrow C_6H_5OH+HCl+N_2.$ எனவே வெப்பநிலே 5°C க்கும் 10°C க்கும் இடையில் இருத்தல் வேண்டும்.

(ii) அதிற் ேரு பினேனில், ஒட்சிசன் அணுவின் எதிர்த்தூண்டல் விளேவால் காபினல் காபன் அணுவின் இலத்திரன் அடர்த்தி குறைக்கப்படும். எனவே CH, — C — O கூட்டம் பென்சின் வீளயத்திலிருந்து, இலத்திரன்களேக் கவர்வதால் பின்வரும் பரிவுநிலேகளில் காணப்படும்.

இப் பரிவமைப்புக்களே நோக்கும்பொழுது, மெற்று நிலேயின் இலத்திரன் அடர்த்தி, ஓதோ யரா நிலேகளின் இலத்திரன் அடர்த்தியிலும் செறிந்து காணப்படும்,

நைத்திரேற்றும் பொருள் NO₂ ் ஆகும். இது செறி HNO₃ | H₂SO₄ கவடையில் இருந்து பெறப்படும்.

NO₂ ⁺ ஒரு சிறந்த **மின்ஞட்டக் கருவி**; எனவே இது இலத்திரன் அடர்த்தி கூடிய மெற்று நிஃயைத் தாக்கி, **மின்ஞட்டப் பி**ரதியீட்டில் ஈடுபட்டு, மெற்று நைத்ரோ அசிற்றோ பீஞே?னக் கொடுக்கும்.

(iii) அளிலீனில் நைதரசன் அணுவிலுள்ள தனிச்சோடி இலத்திரன்கள் பென்சீன் வளயத்திற்கு இழக்கப்படும்.

அனிலீனின் பரிவமைப்பில் நைதரசன் அணுவின் இலத்திரன் அடர்த்தி குறைக்கப் படும். எனவே தாக்கவரும் புரோத்தன் ஒன்றுக்குத் தனிச்சோடி இலத்திரன்களே வழங்கக் கூடிய நிலே குறைவாகக் காணப்படும்.

பென்சைல் அமைனில் உள்ள மெதலீன் ($-CH_2-$) கூட்டம் நைதரசன் அணுவிலுள்ள தனிச்சோடி இலத்திரன்கள் வடோயத்துக்குள் இழக்கப்படுவதைத் தடுக்கும். மேலும் C_8H_5- கூட்டம் இலத்திரன்கடேத் தன் இடத்துக்குக் கவர்ந்தபோதிலும், $C_8H_5 CH_4-$ கூட்டம் இலத்திரன்கடேத் தண் இடத்திலிருந்து தள்ளும். எனவே நைதரசன் அணுவில் உள்ள தனிச்சோடி இலத்திரன்கள் தாக்கவரும் புரோத்தனுக்கு இலகுவாக வழங்கப்படும்.

ஒரு மூலம் என்பது தாக்கவரும் புரோத்தனுக்குத் தனிச்சோடி இலத்திரன்களே இலகுவாக வழங்கவல்லதாகும். இந்நிலே பென்சைல் அமைனில், அனிலீனிலும் அதிக மாகையால், அனிலீனின் மூல இயல்பு, பென்சைல் அமீனிலும் குறைவாகும்.

- (அ) பின்வரும் சோடிச்சேர்வைகளே, ஒவ்வொரு சோடிக்கும் அதே சோதணேப்பொருளே அல்லது அதே சோதணேப்பொருள்களே உபயோகித்து எவ்வாறு வேறுபடுத்தி அறிவீர்? ஒவ்வொரு சேர்வையிலும் சோதணேப்பொருள் | பொருள்களின் தாக்கம் என்ன? ஒவ்வொன்றிலும் உமது நோக்கல்களேத் தருக.
 - (i) C₆H₆ · CH₂ · NH₂ & ii. C₆H₆ · NH · COCH₆ & ii.
 - (ii) CH, CH, CH(OH) CH, etb, (CH,) COHetb
 - (iii) CH, · CO · NH, 24, CH, COONH, 24.
 - (iv) (CH,), · CH · CH, & ib, CH, · CH = CH · CH, & ib

CH₃ Br இலிருந்**து ஆரம்பி**த்து, பின்வருவனவற்றுள் ஏதேனும் முன்றை எவ்வாறு தொகுப்பீர் என்பதைச் சய**ன்பாடுகள், அத்**தியாவசிய பரிசோ*தனே* நிபந்தீனகள் ஆகியவற்றின் மூலம் எடுத்துக் காட்டுக.

- (i) CH, · CH, · CH(OH) · CH,
- (ii) (CH₃)₃ · C · OH

(iii $CH_3 \cdot CH = CH \cdot CH_3$

(iv) CH, · CONH.

பேரொட்சைட்டுக்கள் இல்லாதபொழுது CH, CH = CH · CH, , HBr உடன் புரியும் தாக்கத்திற்கான பொறிமுறையைத் தருக.

(i) இவ்விரு சேர்வைகளேயும் தனித்தனி, CHCl,, அல்ககோல் சேர்த்த KOH என்ப வற்றுடன் வெப்பமாக்கும்பொழுது சகிக்கமுடியாத மணமுடைய சமசயிணட்டைக் கொடுப்பது C₆H, CH, NH, ஆகும். C₆H, NH·CH, காபைல் அமீன் தாக்கத்தைக் கொடாது.

$$C_6H_5$$
 ' CH_2 · NH_2 + $CHCl_3$ + 3 KOH ——— C_6H_4 CH $_2$ · $NC+3$ KCl+ 3 H $_2$ O .

இச்சேர்வைகளேத் தனித்தனி HNO, அமிலத்துடன் [NaNO, | HCl] தாக்கும் பொழுது $C_6H_5 \cdot NH \cdot CH_4$ இல் மஞ்சள்நிற எண்ணெய் தோன்றும். $C_6H_5 \cdot CH_2 \cdot NH_4$ இல் நடுநிலே யான நைதரசன் வாயுக்குமிழ்கள் தோன்றும்.

$$C_6H_5 \cdot NH \cdot CH_5 + HNO_2 \longrightarrow C_6H_5 \cdot N - N = O + H_2O.$$

$$CH_5$$

$$C_6H_5 \cdot CH_2 \cdot NH_2 + HNO_2 \longrightarrow C_6H_5 \cdot CH_2 \cdot OH + N_2 + H_2O$$
.

அல்லது

இவ்விரு சேர்வைகளேயும், மிகையான NaOHஇன் முன்னிலேயில், பராதொலுயின் பென்சின் சல்பணேல் குளோரைட்டுடன் தாக்கவிடும்பொழுது, C,H, CH, NH, இல், சோடியம் ஐதரொட்சைட்டில் கரையும் விளேவு தோன்றும்.

$$C_{6}H_{5} - CH_{2} - N - S - H_{4}C_{6} \cdot CH_{5} \cdot P,$$

$$\downarrow NaOH - H_{2}O.$$

$$C_{6}H_{5} \cdot CH_{2} \cdot N - S - H_{4}C_{6} \cdot CH_{5} \cdot P.$$

$$\downarrow O$$

$$C_{s}H_{s} - N - S - H_{s}C_{s} - CH_{s} \cdot P.$$

$$CH_{s} \quad O$$

(ii) இவ்விரு சேர்வைகளுக்கும் தனித்தனி செறிந்த HCl | ZNCl, என்பவற்றைச் சேர்க்கும் பொழுது (CH,), · C · OH இல் உடனடியாக வீழ்படிவு தோன்றும். ஆளுல் CH, · CH, · CH (OH) CH, இல் சிலமணி நேரத்தின்பின் கலவை கலங்கலாகும்.

$$\begin{array}{c} \text{CH}_{s} \\ \text{CH}_{s} - \overset{1}{\text{C}} - \text{OH} + \text{HCl} - \xrightarrow{\text{ZnCl}_{s}} & \text{CH}_{s} - \overset{1}{\text{C}} - \text{Cl} + \text{H}_{2}\text{O}. \\ \text{CH}_{s} \end{array}$$

$$CH_{\bullet} \cdot CH_{\bullet} \cdot CH \cdot OH + HCl \xrightarrow{ZnCl_{\bullet}} CH_{\bullet} - CH_{\bullet} - CH - Cl + H_{\bullet}O_{\bullet}$$

$$CH_{\bullet} \cdot CH_{\bullet} \cdot CH_{\bullet} + HCl \xrightarrow{CH_{\bullet}} CH_{\bullet} - CH_{\bullet} - CH_{\bullet} - CH_{\bullet} + H_{\bullet}O_{\bullet}$$

அல்லது

 $\mathrm{CH}_{s}\cdot\mathrm{CH}_{s}\cdot\mathrm{CH}_{s}$ $\mathrm{CH}_{s}\cdot\mathrm{CH}_{s}$, $\mathrm{NaOH}\mid\mathrm{I}_{s}$ என்பவற்றுடன் தாக்கமுற்று மஞ்சள் நிற வீழ்படிவாக அயடோபோமைக் கொடுக்கும். ஆஞல் $\mathrm{(CH}_{s})_{s}\cdot\mathrm{C}\cdot\mathrm{OH}$ அயடோபோம் தாக்கத்தைக் கொடாது.

iii) CH, · CONH₂ ஐ NaOH கரைசலுடன் சேர்த்து வெப்பமாக்கும்பொழுது சூடானநிலே யில் காசமான மணமுடைய அமோனியா வாயுவைக் கொடுக்கும்.

CH₃ COONH, குளிர்நிலேயிலேயே சோடியமைதரொட்சைட்டைத் தாக்கி அமோனியா வைக் கொடுக்கும்.

(iv) இவ்விரு சேர்வைகளுக்கும் தனித்தனியே புரோமின்நீர் சேர்க்கும் பொழுது CH₃·CH = CH·CH₃, புரோமின் நீரின் செங்கபில் நிறத்தை நீக்கும். ஆனுல் (CH₃)₂·CH·CH₃, புரோமின் நீரைத் தாக்காது.

$$CH_s \cdot CH = CH \cdot CH_s$$

$$\xrightarrow{Br_s \cdot H_sO} CH_s \cdot CH - CH - CH_s$$

$$OH Br$$

அல்லது

CH, · CH = CH · CH, கார KMnO, உடன் தாக்கமுற்று முதலில் பச்சை நிறத்தையும் பின் கபிலநிற வீழ்படிவையும் கொடுக்கும். ஆஞல் (CH,), · CH · CH, கார KMnO, ஐ தாக்காது.

CH, CH = CH · CH,
$$\xrightarrow{\epsilon \pi p \text{ KMnO}_i}$$
 CH, - CH - CH - CH, OH OH

CH₃ · Mg Br + CH₄ CH₂ · CHO

CH₃ - CH₂ - C - OMgBr

CH₄

(1)

H+ | HOH.

(2)

- Mg
$$\stackrel{\text{Br}}{\sim}$$

OH

CH₅ · CH₆ - C - OH

(இ) HBr, பியூற் — 2. ஈனுக்கு முனேவாக்கத்தைத் தூண்டாத் தானும் முனேவாக்கமடையும்:

$$HBr \longrightarrow H^+ + Br^-$$

H+ உறுதி குறைந்தது. சிறந்த மின்ரைட்டக்கருவி. எனவே இது இலத்திர**ன்** அடர்த்தி கூடிய காபன் அணுவைத் தாக்கும். இதைத் தொடர்ந்து Br , இலத்திர**ன்** அடர்த்தி குறைந்த காபன் அணுவைத் தாக்கி, மின்ருட்ட சேர்க்கைத்தாக்கத்தில் ஈடுபட்டு 2 புரோமோ பியூற்றேனேக் கொடுக்கும்.

$$CH_{3}-CH - CH_{2} - CH_{3} - CH_{3} - CH_{4} - CH_{2} \cdot CH_{3} - CH_{2} \cdot CH_{3} - CH_{4} \cdot CH_{5} \cdot CH_{5} - CH_{5} \cdot CH_{5}$$

- 8. 🎉 H₂O ஐ அனுபவ சூத்திரமாகவுடைய A என்னும் அருேமற்றிக்குச் சேர்வையின் ஆவியடர்த்தி ்8 ஆகும். A ஐ, ஐதான H₂SO உடன் மீள்பாய்ச்சி ஒடுக்கப்பட்டபொழுது அது மெ**தனேஃவயும்,** B என்ற பதார்த்தத்தையும் கொடுத்தது.
 - (அ) A என்பது என்ன?
 - (ஆ) சமன்பாடுகள், முக்கிய பரிசோத*ி*னகள் மூலம் B பை எவ்வாறு
 - (i) C, H, CHO (ii) C, H, NH CO CH, ஆக மாற்றலாமென்பதை எடுத்துக்காட்டுக (ஒவ்வொன்றுக்கும் ஒருமுறை மாத்திரம் தருக:)
 - (இ) பின்வரும் ஒவ்வொரு தொகுப்பிற்கான ஒரு முறையைச் சுருக்கமாகத் தருக:
 - (i' C,H, CHO இவிருந்து C,H, CH = CH · CHO இன் தொகுப்பு
 - √ிi) C₊H₁ · CO · NH₊ இவிருந்து C₊H₁ NH₂ இன் தொகுப்பு.
 - இ (i) இ (ii) இற்கான பொறிமுறைகளேத் தருக:
 - மகுப்பறிச் சேதன இரசாயனத்தில் பின்வரும் சோதனேப்பொருட்களின் உபயோகத்தைக் தருகு
 - (i), FeCl₃,
- (ii) Na H SO₃,
- (iii) CHCl,

விடை (8)

A இன் மூலக்கூற்று நிறை = ஆவியடர்த்தி
$$\times$$
 2. = $68 \times 2 = 136$.

A இன் மூலக்கூற்றுச் சூத்திரத்தை (C,H,O) n எனின்

A இன் மூலக்கற்று நிறை = $[4 \times 12 + 4 \times 1 + 1 \times 16]$ n = 136.

$$68n = 136$$
.

$$n = 2$$
.

். A இன் மூலக்கூற்றுச் சூத்திரம் C₈ H₈ O₂ .

மாற்றீடு :

(ii)
$$C_{e}H_{b} \cdot COOH \xrightarrow{(1)} G_{e}D \setminus NH_{s}$$
 $C_{e}H_{b} \cdot CO \setminus NH_{s}$

$$\downarrow Br_{s} \mid NaOH$$

$$C_{e}H_{b} \cdot NH \cdot COCH_{s} \cdot CO \cdot CI$$

$$C_{e}H_{b} \cdot NH \cdot COCH_{s} \cdot CO \cdot CI$$

பொறிமுறை

$$C_{\epsilon}H_{\epsilon} \stackrel{O}{-}C - H \stackrel{O}{\longleftarrow} C_{\epsilon}H_{\epsilon} - C^{+} - H.$$

$$C_{\epsilon}H_{\epsilon} \cdot CH = CH \cdot CHO$$

$$\Leftrightarrow \begin{array}{c} & \downarrow CH_{\epsilon} \cdot CH \\ & \downarrow CH_{\epsilon}$$

(ii) O O O
$$C_6H_5 \cdot C - NH_2 \xrightarrow{Br_2 \mid NaOH} C_6H_5 - C - N - H$$

$$C_6H_8-N=C=0$$
 $<\frac{\omega \omega \delta s.m}{g_{\perp \omega \pi \hat{p} p \hat{\omega}}} \left[C_6H_5-C-N: \right]$ நிலேயற்றது:

(2)
$$\Delta H$$

(3) $-CO_3$

- (#) (i) FeCl₃ :
 - 1. நடுநிலேயான FeCl₃, பீ**ஞேல்களுடன் ஊதாநிறத்தைக் கொடுக்**கும். எனவே இது பீ**ஞேல்**களே அறிவதற்குப் பயன்படுத்தப்படும்.
 - 2: இலாசைனரின் வடிதிரவத்தில் நைதரசனே அறிவதற்குப் பயன்படுத்தப்படும்:
 - 3. காபொக்சிலிக் கமிலங்களுடன் பழுப்பு (Buff) நிற வீழ்படிவைக் கொடுக்கும்.
 - (ii) NaHSO₃ : இது காப²னல் சேர்வைகளுடன் வெண்பளிங்கு போன்ற கூட்டல் விள்வைக் கொடுக்கும். அல்டிகை**ட்**டுக்கள், சில கீற்ரோன்கள் போண்ற சாப²னல் சேர்வைகளே அறியலாம்.
 - (iii) CHCl, t-
 - 1: முதல் அமீண்களே CHCl₃, அல்ககோல் சேர்ந்த KOH என்பவற்றுடன் வெப்ப மாக்கும்பொழுது, சகிக்கமுடியாத மணமுள்ள காபைல் அமீன் தோன்றும். இதிலிருந்து முதல் அமீன்களே அறியலாம்?
 - 2. Br₂, I₂ அறிவதற்கு CHCl₃ பயன்படுத்தப்படும். [குளோரோபோமுடன் மஞ்சள் நிறத்தைக் கொடுக்கும்.]
- 9. (அ) பின்வரும் தரவுகளிலிருந்து A, C, D ஆகியவற்றின் கட்டமைப்புக்களேத் தருக.
 - (f) A என்பது, C₉H₁₉ ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய அரோமற்றிக்கு சேர்வையாகும். அது Br₂ | CCl₂ உடன் தாக்கமுறவில்ஃ. ஆஞல் அது சூடான KMnO₄ உடன் C₈H₉O₄ ஐ மூலக்கூற்றுச்சூத்திரமாக உடைய B என்னும் சேர்வையைக் கொடுத்தது. A இலிருந்து இரண்டு ஒரு புரோமோ வணப்பிரதியீட்டுச் சேர்வைகள் மாத்திரந்தான் பெற முடியும்.
 - (ii) C என்பது, C,H,O, ஐ மூலக்கூற்றுச்சூத்திரமாக உடைய நடுநிலேச் சேர்வையாகும்: பீலிங்கின் கரைசலேயோ, தொலனின் சோதன்ப் பொருளேயோ இது தாழ்த்தாது. ஆகுல் ஐதான HCl உடன் தாக்கமுற்று அசிற்றுவிடிகைட்டையும், மெதனேலேயும் தருகின்றது.
 - (iii) D என்பது C₃H₅O₃ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய சேர்வையாகும். சோடாச்சுண்ணும் புடன் வெப்பப்படுத்தும்பொழுது அது எதையில் அல்ககோலேத் தருகின்றது. அதை ஒளியியிற் தாக்க வடிவங்களாகப் பிரிக்கமுடியாது.
 - (ஆ) P— டைந்த்திரோ பென்சைல் புரோமைட்; ஏசைலொட்சி (காபொட்சிலேற்) அனயன்களுடன் தாக்கமுற்று பளிங்குப் பெறுதிகளேத் தருகின்றது. இப் பெறுதிகள் எசுத்தர்கள் கட்டமைப்புச் சூத்திரங்களேப் பயன்படுத்தி, அசற்றிக்கமிலத்தின் இவ்வகைப் பெறுதி உருவாக்கலுக்கான ஒரு சமன்பாட்டையும், முக்கிய பரிசோதனே நிபந்தணேகளேயும் தருக.
 - (இ) (i) பின்வரும் தொடரில் A, B, C, D, E என்ற எழுத்துக்களிற் பெயரிடப்பட்டிருக்கும் சேர்லை களே இனம் காண்க:

$$C_7H_8$$
 [A] $\xrightarrow{\text{Cl}_2 \mid 100^{\circ}\text{C}}$ $C_7H_7\text{Cl}[B]$ $\xrightarrow{\text{KCN}}$ $C_8H_7\text{N}$ [C] $\xrightarrow{\text{H}^+ / H_2\text{O}}$ $\xrightarrow{\text{C}}$ $C_8H_8\text{O}$, [D] $\xrightarrow{\text{$\mathfrak{g}$}\text{iff}\,\mathfrak{g}\,\omega\,\pi\,\varpi}$ $\xrightarrow{\text{C}}$ $C_7H_8\text{O}$, [E],

(ii) B (C, H,Cl) இலிருந்து பென்சாலிடிகைட்டைத் தொகுப்பதற்கான ஒரு முறையைத் தருக. வடை (9)

(ii)
$$C = CH_{s_{i}} - C - OCH_{s_{i}}$$

CH_sCOONa + P - NO₂ - C₆H₄ - CH₂Br
$$\longrightarrow$$
 PiNO₃ - C₆H₄ - CH₃ - O - C - CH₄ '+ NaBr.

(a) (i)
$$A = C_6H_5 - CH_5.$$

$$B = C_6H_5 - CH_2. CI.$$

$$C = C_6H_5 \cdot CH_2 \cdot CN.$$

$$D = C_6H_5 \cdot CH_2 \cdot COOH.$$

$$E = C_6H_5 \cdot COOH.$$

அல்லது :

கல்விப் பொதுத் தராதரப் பத்திர (உயர்தர)ப் பயிற்சிப் பரீட்சை, ஏப்பிரல்—1972

இரசாயனம் II

பகுதி B கட்டுரை

\mathbf{B} I

1972

1 - பின்வருவன, ஆவர்த்தன அட்டவணேயின் மூன்றும் வரிசை மூலகங்களினது சில சாதாரண சேர்வை உ ளாகும்.

NaOH.

 $Mg(OH)_{3}$.

Al(OH);

Si(OH), அல்லது H₄SiO,

P(OH), அல்லது H,PO. .

Cl (OH) அல்லது HOCl.

- (அ) மூன்ரும் வரிசை மூ**லகங்களினது** இ**லத்திரன்** உருவமைப்புக்**களின்** அடிப்படையில், இச் சேர்வைகளின் அமில—கார நட**த்தைகளின் ஒழு**ங்கு வரிசையை விளக்குக.
- (ஆ) பின்வருவன**வற்றை எடுத்துக்காட்**டுவதற்கான சமன்பாடுகளே எழுதுக
 - (i) நீர்க்கரைசலில் ஒவ்வொரு சேர்வையினதும் அயனுக்கம்.
 - (ii) ஒவ்வொரு சேர்வையும், அமிலமாகவோ, அல்லது காரமாகவோ அல்லது இரண்டு மாகவோ தொழிற்படும் தாக்கம்.

விடை:

1. (அ.) சேர்வைகளின் அமிலகார தொழிற்பாடு, அச்சேர்வைகளிலுள்ள மூலகங்களின் மின்னெதிர் இயல்பில், அதாவது இலத்திரன்களேப் பிணேத்து வைத்திருக்கும் வலுவில் தங்கியிருக்கும்.

> ஒரு மூலகத்தின் வீள்வுக்கரு ஏற்றம் கூடும்பொழுதும், அணுஆரை குறையும்பொழுதும் இலத்திரன் கருவுடன் வலுவாகப் பிணக்கப்படுவதால் மின்னெதிர் இயல்பு அதிகரிக்கும். சோடியத்திலிருந்து குளோரீனே நோக்கும்பொழுது, ஒரே பிரதான சத்திப்படியிலுள்ள உப சத்திப்படிகளில் இலத்திரன்கள் நிரப்பப்படுவதால், இலத்திரன் திரை வீளேவில் அதிக மாற்றம் இல்லே. ஆணுல், கருஏற்றம் படிப்படியாக அதிகரிக்கும். எனவே, ஒழுக்கு இலத்திரன்கள் கரு வுடன் வேலுவாகப் பிணேக்கப்படுவதனுல், அணுஆரை குறையும். எனவே, மின்னெதிர் இயல்பு Na. Mg, Al, Si, P, Cl என்ற ஒழுங்கின்படி அதிகரிக்கும்.

மூலகம் M ஆனது பங்கீட்டுப்பிணேப்பிறுல் — OH தொகுதியுடன் இணந்து காணப்படும். M — O — H

M—OH பிணேப்பில், மூலகம் Mஇன் இலத்திரன் கவரும்தன்மை (மின்னெதிர் இயல்பு) குறைவாஞல், M இலகுவாகப் பங்கீட்டு இலத்திரன்களே முற்றுக OH க்குக் கொடுத்துப் பின்வருமாறு அயஞகும்.

/ \
M — OH — → M+ + OH
எனவே கரைசெல் வேன்கோரமாகக் காணப்படும்.

M—OH பிணேப்பில், M இன் இலத்திரன் கவரும் வலு (மின்னெதிர் இயல்பு) அதிகமாஞல், M—O பிணேப்பு உறுதியாக்கப்படும். எனவே M—O பிணேப்பு இலத்திரன்கள் கூடுதலாக M இஞல் கவரப்பட்டுக் காணப்படும். எனவே ஒட்சிசன் அணுவுக்கு ஏற்படும் இலத்திரன் அடர்த்திக்குறைவைத் தீர்ப்பதற்கு O—H பிணேப்பு இலத்திரன்கள் கூடுதலாக ஒட்சிசன் அணுவை நாடி இருக்கும். ஆகவே ஐதரசன் அணு புரோத்தஞக வெளியேறும் நிஸ்யில் காணப்படும். எனவே இது பின்வருமாறு அயஞகும்.

$$M-O-H \longrightarrow MO^- + H^+$$

இத்தாக்கம் நிகழக்கூடிய வாய்ப்பு, சோடியத்திலிருந்து குளோரீணே நோக்கும்பொழுது. அதிகரிப்பதால் அமில இயல்பு படிப்படியாகக் கூடும்.

Na — O — H இல் சோடியத்தின் அயஞக்க அழுத்தம் குறைவாதலால் (மின்னெதிர் இயல்பு குறைவாதலால்) இலகுவாக, இலத்திரன்களே முற்றுக — OH க்கு இழந்து அயஞ்கும், எனவே கரைசலில் OH அயன்கள் செறிந்து காணப்படும். எனவே கரைசல் வன்மூலமாகத் தொழிற்படும்?

Mg இன் மின்னெதிர் இயல்பு, சோடியத்திலும் அதிகமாதலால், இலத்திரணே OHக்கு லழங்கும் நிஃயும் குறையும். எனவே அயஞக்கம் குறைந்து குறைந்தளவு OH அயண்கள் கரைசலில் காணப்படும். எனவே கரைசல் மென்மூலமாகத் தொழிற்படும்.

Al இன் அயஞக்க அழுத்தம் Mg இலும் குறைவானது. ஆஞல் மின்னெதிர் இயல்பு, Mg இலும் அதிகமானது. எனவே இங்கு இலத்திரன்களேப் பகுதியாக இழக்கக்கூடிய நிலேயும், கவரக்கூடியநிலேயும் காணப்படும். எனவே இது ஈரியல்புடையதாகத் தொழிற்படும்.

$$H - O \rightarrow Si \leftarrow O - H$$
 $H - O \rightarrow P$
 $O - H$
 $O - H$
 $O - H$
 $O - H$

Si இலிருந்து குளோரீண நோக்கும்பொழுது மின்னெதிர் இயல்பு கூடும். மேலும் Si அணுவுடன் 4 —OH கூட்டமும், பொசுபரசுடன் 3. —OH கூட்டமும், குளோரினுடன் ஒரு —OH கூட்டமும் இணந்து காணப்படும். எனவே Si—O, P—O, Cl—O பிணப்புக்களே நோக்கும்பொழுது, பிணப்பு இலத்திரன்கள் கவரப்படும் வீதம் Si இலிருந்து குளோரீண நோக்கும்பொழுது அதிகரிக்கும். எனவே O—H பிணப்பிலுள்ள ஐதரசன் அணு, புரோத்த குகை வெளியேறும் வாய்ப்பு, Si இலிருந்து குளோரீண நோக்கும்பொழுது அதிகரிக்கும்.

ஒரு அமிலம் என்பது, இலகுவாக புரோத்தணே வெளியேற்றக்கூடிய நிஃயில் உள்ள தாகும். இந்நிஸ், Si இலிருந்து Cl ஐ நோக்க அதிகரிக்கும். எனவே HOCl வன்னமில மாகும். H_3PO_3 மென்னமிலமாகவும், Si (OH) அதிமென் அமிலமாகவும் தொழிற்படும்.

(3) (i) NaOH
$$\stackrel{-}{\longleftrightarrow}$$
 Na⁺ + OH $\stackrel{-}{\longleftrightarrow}$ Mg(OH)₂ $\stackrel{-}{\longleftrightarrow}$ Mg⁺⁺ + 2 OH $\stackrel{-}{\longleftrightarrow}$ Al(OH)₃ $\stackrel{-}{\longleftrightarrow}$ AlO₂ + H⁺ + H₂O.

Si(OH)₄ $\stackrel{-}{\longleftrightarrow}$ 4H⁺ + SiO₄ $\stackrel{4}{\longleftrightarrow}$ 2H⁺ + SiO₃ + H₂O.

H₃ PO₃ $\stackrel{-}{\longleftrightarrow}$ 2 H⁺ + HPO₃ $\stackrel{-}{\longleftrightarrow}$ Cl (OH) $\stackrel{-}{\longleftrightarrow}$ H⁺ + OCl

(ii) NaOH, Mg(OH)₂ காரமாகத் தொழிற்படும்.

$$Na^+ OH^- + H^+ \longrightarrow Na^+ + H_2O$$
.

$$Mg^{++} + 2OH^{--} + 2H^{+} \longrightarrow Mg^{++} + 2H_{2}O.$$

Al (OH) 8 ஈரியல்புடையது.

காரமாகத் தொழிற்படுவதற்கான தாக்கம்.

$$Al(OH)_8 + 3H^+ - \rightarrow Al^{8+} + 3H_2O.$$

அமிலமாகத் தொழிற்படுவதற்கான தாக்கம்

$$Al(OH)_8 + OH^- \longrightarrow AlO_8^- + 2H_2O.$$

Si (OH) , H₈ PO₈ , HOCl அமிலமாகத் தொழிற்படும்:

$$Si(OH)_4 + 2OH^- \longrightarrow SiO_8^- + 3H_2O$$

$$H_8PO_8 + 2OH^- \longrightarrow HPO_8 + 2H_2O$$

$$H^+OCl^- + OH^- \longrightarrow H_2O + OCl$$

- அ) பின்வருவனவற்றிற்கான அயன் இலத்திரன் அரைத்தாக்கச் சமன்பாடுகளே எழுதுக.
 - (i) அமிலக்கரைசவில் **அபடேற்றபன், அபட**ுகத் தாழ்த்தப்படுத**்**.
 - (ii) அமிலக் **கரைசலில் அபடைட்டயன்**, அபடஞைக ஒட்சியேற்றப்படுதல்.
 - (ஆ) இரண்டு அயன் சமன்பாடுகளிலும் ஒட்சியேற்ற எண்களோக் கருத்தில் கொண்டு பின்வருவமைற்றின் சமவலுநிறைகளோக் கணிக்க.
 - (i) அமிலக்கரைசவில் பொற்ருசியம் அயடேற்று.
 - (ii) அமிலக்கரைசலில் பொற்றுசியம் அயடைட்டு
 - (இ) பொஸ்பரசின் பின்வரும் அமிலங்களின் கட்டமைப்புக்களே எழுதுக.
 - (i) பொஸ்போரிக்கமிலம் (H₈PO₄).
 - (ii) ஐப்போ பொஸ்போரிக்கமிலம் (HaPO2).
 - (iii) பைரோ பொஸ்போரிக்கமிலம் (H4P3O7).

விடை:

2. (4) (i)
$$210_{8}^{-} + 12H^{+} + 10e^{-} \rightarrow 1_{2} + 6H_{2}O$$
.

(ii)
$$2 \Gamma + 2 H^+ + [O] \longrightarrow I_2 + H_2O$$
.

(ஆ) (i) IO₃ இல் அயடுளின் ஒட்சியேற்ற எண் 🎟 🛨 5.

I₂ இல் அயடுவின் ஒட்சியேற்ற எண் = O.

.: lமுல் IO , I2 ஆக அமிலக்கரைசலில் தாழ்த்தப்படும்பொழுது,

ஒட்சியேற்ற எண் மாற்றம் = 5

:
$$KIO_8$$
 இன் சமவலு நிறை = $\frac{39+127+48}{5}$ = 42:8

(ii) I இல் அயடினின் ஒட்சியேற்ற எண் 😑 — 1.

I₂ இல் அயடினின் ஒட்சியேற்ற எண் = O.

1 மூல் I , I₂ ஆக அமிலக்கரைசனில் ஒட்கியேற்றப்படும்பொழுது ஓட்கியேற்ற எண் மாற்றம் = 1.

KI இன் சமவலு நிறை =
$$39+127=166$$
.

3. (அ) மின்பகு கரைசலில் ஏற்றத்துணிக்கைகள் இருக்கின்றன என்பதற்கான உமது சான்றைச் சுருக்க மாகக் கூறுக,

(ஆ) செப்பு மின்வாய்களேப் பயடைபடுத்தி, செப்பு சல்பேற்றுக் கரைசலுக்கூடாக O·1 அம்பியர் மின்னேட்டம் 10 மணித்தியாலங்களுக்குச் செலுத்தப்பட்டது. செப்பின் மின்னிரசாயனச் சமவலு 1:18576 கி. அம்பியர்—மணி எனக்கொண்டு, படிவடைந்த செம்பின் நிறையைக் கணிக்க.

செப்பு முலாயிடவில், சிக்கற் செப்பு உப்புக்கள் ஏன் பயன்படுத்தப்படுகின்றன என்பதை விளக்குக.

(இ) ஒரு கிராமயன் $Cu(CN)_4$ 8 ஐ உண்டாக்குவதில், 1 கிராமயன் Cu^{++} க்கு 5 கிராமயன் CN^- தேவைப்படுகின்றதெனக் காட்டுக.

குப்பிரஸ் அய**னின்** செறிவை 10⁻¹⁸ மூல் இலி. ஆக்குவதற்கு, 1000 மி. இலி. 0·02 M Cu SO₄ கரைசலுக்குச் சேர்க்கப்படவேண்டிய CN⁻ அயன்களின் நிறையைக் கணிக்க.

[
$$Cu(CN)_4$$
 அயனின் உறுதியின்மை மாறிலி 5×10^{-28} , $C = 12$, $N = 14$]

விடை

3. (அ) (1) மின்பகுகரைசல் ஒன்றுக்குள். இரண்டு மின்வாய்களே அழுத்தி, அம்மின்வாய்களே, ஒரு மின்கலத்துடன் இணக்கும்பொழுது, அதாவது ஒரு மின்னியக்க விசையைக் கொடுக்கும் பொழுது அயன்கள் கடத்தப்பட்டு மின்வாயில்களில் தாக்கம் நிகழ்ந்து விளேவுகள் பெறப் படும்:

(உடம்) : Cu SO₄ நீர்க்கரைசலில் பின்வரும் அயன்கள் காணப்படும்.

$$H_2O \stackrel{\triangleright}{\triangleleft} H^+ + OH^-$$
.

இக்கரைச்ஃ, காபன் மின்வாயில் கொண்டு மின் பகுக்கும்பொழுது,

அஞெட்டில், 40H — 4e ____> $2H_2O$ + O_2 ↑ என்னும் தாக்கங்கள் நிகழும்.

- (ii) அயன்தன்மையுள்ள திண்மங்களேக்கொண்டுள்ள கரைசலில் உள்ள திண்மங்களின் கணிக்கப் பட்ட பிணிப்பியல்புகளின் பெறுமானங்கள் அறிமுறைக்கணியத்திலும் அதிகமாகக் காணப் படும்.
- உ+ம்: IM NaCl நீர்க்கரைசலின் கொதிநிலே ஏற்றம் அல்லது உடைநிலே இறக்கம் சாதாரணத் திலும் இருமடங்காகக் காணப்படும்.

அல்லது பிணிப்பியல்பு முறையால் NaClஇன் மூலக்கூற்று நிறையை நீர்க்கரைசலில் துணியும்பொழுது, அதன் பெறுமானம் அரைவாசி ஆகக் காணப்படும். இதிலிருந்து NaCl நீர்க்கரைசலில் இரு அயன்களாக அயஞ்கும் என்பது தெளிவு.

(iii) சமகிராம் சமவலு வன்காரமும், சமகிராம் சமவலு வன்மூலமும் தாக்கத்தில் ஈடுபடும் பொழுது வெளிவிடப்படும் நடுநிலேயாக்கல் வெப்பம் ஒரு மாறிவி ஆகும்; (இங்குவெளி விடப்படும் வெப்பம் நீரின் ஆக்க வெப்பமாகும்.)

இதிலிருந்து வன்னமிலமும், வன்காரமும் முற்றுன அயன் நிலேயிலுள்ளது என்**பது** தெளிவு.

(iv) முடிவின்றி ஐதாக்கலில் ஒரு அயனின் சமவலுக்கடத்து திறன் ஒரு மாறிலி ஆகும்:

$$\wedge$$
 KCl = \wedge K⁺ + \wedge Cl⁻

உ+ம்: ஒரு வ**ன்மின்பகு**பொருளே ஐதாக்கும்பொழுது ஐதாக்கலுட**ன்** கடத்துதிறன் அதிகரிக் கும். ஆளுல் ஒரு குறிப்பிட்ட ஐ**தா**க்கத்திற்குப் பின் கடத்துதிற**ன்** ஐதாக்கலுடன் மா*ரு*து.

ஐதாக்கு**ம்பொழுது அயன்களு**க்கிடையேயுள்ள கவர்ச்சி விசை குறைக்கப்படுவதா**ல்** கடத்துதிறன் அதிகரிக்கும். அயன்கவர்ச்சிவிசை முற்றுக நீக்கப்பட்டபின்னர், ஐதாக்கனுடன் கடத்துதிறன் மாருது. இதிலிருந்து மின்பகு கரைசலில் அயன்கள் காணப்படுகின்றன என்பது தெளிவு.

- (V) நிறமா ஃப் பதிகருவியைப் பயன்படுத்தி. ஒரு/ கரைசலின் நிறத்திற்கு அயண்களே காரணமெனக் கண்டுபிடிக்கப்பட்டுள்ளது .
- உ+ம்: Cu++ நீலம், CrO4 மஞ்சள்.
- (ஆ) செலுத்தப்பட்ட மின்கணியம் = 0·1×10 = 1 அம்பியர் மணி.

மின்னிரசாயனச் சமவலு என்பது ஒரு அலகு மின்கணியத்தைச் செலுத்தும்பொழுது படிவிக்கப்படும் திணிவாகும்.

1 அம்பியர்-மணி மின்கணியத்தால் படிவிக்கப்படும் செம்பின் நிறை = 1·18576 இராம்:

ஒரு செப்பு உப்புக்கரைசலே நேரடியாக மின்பகுக்கும்பொழுது, Cu^{++} அயன்களின் செறிவு அதிகமாயிருப்பதால், மின்னிறக்க அழுத்தம் குறைவாகக் காணப்படும். எனவே அயன்கள் இலகுவாக இறக்கப்படுவதால், படிவு ஒழுங்காக நிகழாது. இதைத்தவிர்த்து, ஒழுங்கான படிவை ஏற்படுத்துவதற்காக Cu^{++} அயன்களே நேரடியாக மின்பகுக்காது, $Cu(CN)_{\frac{3}{2}}$ என்னும் சிக்கல் அயன் பயன்படுத்தப்படும். இங்கு Cu^{++} அயன்களின் செறிவு குறைக்கப்படுவதால் படிவு சீராக இருக்கும்.

Cu + Cu⁺ இலும் உறுதி கூடியது. எனவே சிக்கல் உப்பு அயளுகும்போது

Cu+ அயன்கள் உருவாவதால், இலகுவாக இறக்கப்பட்டுப் படியும்.

மேற்காட்டப்பட்டுள்ள சமன்பாடுகளின் வழி,

2 கிராமயன் Cu++ ஐ, 2 கிராம் அயன் Cu (CN), ⁸ஆக மாற்றுவதற்கு 10 கிராம் அயன் CN தேவைப்படுகிறது.

். 1 கிராம் அயன் Cu(CN) 4 8 ஐ உருவாக்க 5 கிராம் அயன் CN தேவைப்படும்.

குறிப்பு: 2 CN, சயனஜின் வாயுவாக வெளியேற்றப்படும்.]

Cu (CN)₄ ³ இன் உறுதியின்மை மாறிலி K ஆயின்,

$$K = \frac{[Cu^+][CN]^4}{[Cu(CN)_4^{8^-}]}$$

Cu(CN)₄⁸ என்னும் சிக்கல் அயனின் அயஞக்கம் மிகவும் குறைவாகும். எனவே Cu(CN)₄⁷⁵ இன் செறிவில் மாற்றமில்லே எனக் கொள்ளலாம்;

அதாவது $\mathrm{Cu}\,(\mathrm{CN})_{\,4}{}^3$ அயனின் செறிவைக் கரைசலில் உள்ள Cu^{++} அயன்களின் செறிவுக்குச் சமனெனக் கொள்வது தவருகாது.

$$\therefore [Cu^{++}] = [Cu(CN)_4^{8-}] = 0.02 \text{ (Lphi)} 2 \text{ (CN)}_4^{8-}]$$

$$\therefore [CN^-]^4 = \frac{K \cdot [Cu(CN)_4^{8-}]}{[Cu^+]} = \frac{5 \times 10^{-28} \times 0.02}{10^{-18}}$$

$$= 10^{-16}$$

0 · 02 கிராம் அயன் Cu++ஐ, சிக்கல் சேர்வையாக Cu(CN)₄ ^{3 -} மாற்றுவதற்குத் தேவை

union
$$CN^- = 0.02 \times 5$$

= 0.1 upin

4: கள்ளைச் சாராய (ககிப்பு) மாதிரி K ஒன்றினப் பகுத்துப் பார்த்தபொழுது அது 184 கி. எதனேஃவையும் 60 கி. அசற்றிக்கமிலத்தையும், 900 கி. நீரையும், கிறிதளவு எஸ்தர்களேயும், உயர் அல்ககோல்களி விருத்தும், புரதங்களிலிருந்தும் வந்திருக்கக்கூடியதுமான வேறு கில கூறுகளேயுஞ் கிறிதளவில் கொண்ட 42 கி. மீதியையும் கொண்டிருக்கக் காணப்பட்டது. (அ) அல்ககோலுக்கும், அசற்றிக்கமிலத்திற்கும் உள்ள எசுத்த்ராக்கத்தின் சமநிஃ மாறிலி 4 எனக் கொண்டு, மாதிரி K இலுள்ள எதயில் அசற்றேற்றின் நிறையைக் கணிக்க. தாக்குதிறன்களே (தாக்கதிணிவுகள்) மூல்ப்பின்னங்களில் உரைக்கலாமெனக் கொள்க.

$$[C=12, O=16, H=1]$$

(ஆ, எதயில் அல்ககோல் (EtOH), அசற்றிக்கமிலம் (HA), எதயில் அசற்றேற் (EtA) நீர் ஆகியவற்றைக்கொண்ட கலவை ஒன்று தாங்கற் தொழிற்பாட்டைக் காட்டுமா இல்லேயா என்பதை விளக்குக. இத்தொகுதியை NaOH, HA, NaA, நீர் ஆகியவற்றைக் கொண்ட தொகுதியுடன் ஒப்பிடுக.

മികെ 🗀 :

(அ) $C_2H_5OH + CH_3CO_2H = \longrightarrow CH_3COOC_2H_5 + H_2O$: இச்சமநில்வின் மூலப்பின்னமாறிவிமை K_χ என்க:

$$\therefore K_{X} = \frac{X_{CH_{8}CO_{2}C_{2}H_{5}} \cdot X_{H_{2}O}}{X_{C_{2}H_{5}OH} \cdot X_{CH_{8}CO_{2}H}}$$

மீதியின் மொத்தநிறை 42 கிராமாகும். இவ் அல்ககோல்களினதும், புரதங்களினதும் மூலக் கூற்றுநிறைகள் அதிகமாதலால், சமநிஃயிலுள்ள இவற்றின் கிராம் மூல்கள் மிகவும் குறைவாகும். எனவே இதை, மொத்தகிராம் மூல்களுடன் ஒப்பிடும்பொழுது கருதாமல் விடலாம். அதாவது இவற்றின் செறிவு சமநிலேயைப் பாதிக்காது எனக் கொள்ளலாம்.

சமநிலேயி லுள்ள

$$C_2H_5OH = \frac{184}{46} = 4$$
 ဟုတ်နော်၏
$$CH_3COOH = \frac{60}{60} = 1$$
 ဟုတ်
$$H_2O = \frac{900}{18} = 50$$
 ဟုတ်နော်။

சம்நிலேயில் N மூல் CH₈COOC₂H₅ (எசுத்தர்) உள்ளதெனக் கொள்த.

.. சமநிலேயிலுள்ள மொத்தமூல்கள் 55+N.

$$X_{C_3} H_{5}OH$$
 $\frac{4}{55+N}$
 $X_{CH_3}COOH$ = $\frac{1}{55+N}$
 $X_{H_2}O$ = $\frac{50}{55+N}$
 $X_{CH_3}COOC_2H_5$ = $\frac{N}{55+N}$

$$\therefore K_{X} = \frac{\begin{bmatrix} N \\ \overline{55+N} \end{bmatrix} \begin{bmatrix} \underline{50} \\ \overline{55+N} \end{bmatrix}}{\begin{bmatrix} \underline{4} \\ \overline{55+N} \end{bmatrix} \begin{bmatrix} \underline{1} \\ \overline{55+N} \end{bmatrix}}$$

அ.. து
$$4 = \frac{50N}{4}$$
 $N = \frac{16}{50} = 0.32$ மூல்கள்

சமநிலேயிலுள்ள எதயில் அசற்றேற் = 0 · 32 × 88 = 28 · 16 கிராம்:

(ஆ) எதயில் அசற்றேற்றின் தாங்கற் தொழிற்பாடு:

$$C_2H_5OH + CH_8COOH \longrightarrow CH_8COOC_2H + H_2O$$
:

ு எதயில் அசற்றேற்றின் அயஞக்கம் மிகவும் குறைவானது. எனவே தொகுதியில் கருதத் தக்களவுக்கு அசற்றேற் அயன்கள் காணப்படமாட்டா: எனவே H⁺ அயன்களேச் சேர்க்கும் பொழுது இதை அகற்றுவதற்கு அன்னயன்கள் தொகுதியில் இல்லேயாதலால் அமிலங்களின் சேர்க்கையை இத்தொகுதி தாங்காது. எனவே தாங்கற் தொழிற்பாட்டைக் காட்டாது.

OH⁻ அயன்களேச் சேர்க்கும்பொழுது, தொகு**தியிலுள்ள அ**சற்றிக்கமிலம் தாக்கமுற்று நடு நிலேயான நீ**ராக** மாற்றப்படும்.

$$CH_8COOH + OH \longrightarrow CH_8COO + H_2O.$$

இதனுல், கரைசல் காரங்களின் சேர்க்கையைத் தாங்கும். அதாவது, காரங்களேச் சேர்க்கும் பொழுது தாங்கற்கரைச**லா**கத் தொழிற்படும்.

(i) Et OH , HA என்பவற்றைக் கொண்ட ஒரு கரைசலின் pH பின்வரும் சமன்பாட்டால் தரப்படும்

$$pH = pK_{HA} + \omega L \frac{[Et \cdot A]}{[HA]}$$

(ii) HA, NaA என்பவற்றைக் கொண்ட ஒரு கரைசலில் பின்வரும் சமநிலே காணப்படும்:

$$HA \longrightarrow H^+ + A^-$$

இக்கலவையின் pH பின்வரும் சமன்பாட்டால் தரப்படும்.

$$pH = pK_{HA} + \omega L \frac{[NaA]}{[HA]}$$

சோடியம் அசற்றேற் முற்ருன அயன் நிலேயிற் காணப்படும். எனவே சமநிலேயில் அசற்றேற் அயன்கள் செறிந்து காணப்படும்.

சோடியம், அசற்றேற்றுடன் ஒப்பிடும்பொழுது, எதயில் அசற்றேற்றின் அயஞக்கம் மிகவும் குறைவானது.

இக் கலவைகளுக்கு H⁺ அயனேச் சேர்க்கும்பொழுது.

- (i) NaA | HA கலவையில் A அயன்கள் செறிந்து காணப்படுவதால் இது H⁺ உடன் இணேந்து அயனுக்கம் குறைந்த HA ஆக மாற்றப்படும். எனவே pH அதிகம் பாதிக்கப்பட மாட்டாது.
- (ii) Et A | HA கொண்ட கலவையில், சேர்க்கப்படும் H⁺ அயன்களே அகற்ற அன்னயண்கள் அசற்றேற்) இல்லேயாகையால், அமிலத் தாங்கியாகத் தொழிற்படாது. கலவைகளுக்கு. OH அயணேச் சேர்க்கும்பொழுது,

இரு கலவைகளிலும் HA இருப்பதால், சேர்க்கப்படும் OH, HA உடன் தாக்கமுற்று நடுநிலேயான நீராக மாற்றப்படும். எனவே இரண்டு கலவைகளும் சேர்க்கப்படும் காரத்தைத் தாங்கும்.

சோடியம் அசற்றேற்றினதும், எதயில் அசற்றேற்றினதும் வேறுபாடான அயஞக்கமே இவற்றின் தொழிற்பாடு வேறுபடுவதற்குக் காரணமாகும்.

BII

- 5 ஜத**ோகாபன்** (A) 208 ஐ மூலக்கூற்று நிறையாகவுடையது; அதன் மிக எளிய சூத்திரம் **CH ஆகும்.** வன்மையான ஒட்சியேற்றலின்பொழுது (A) பென்சோயிக்கமிலத்தை மாத்திரம் கொடுத்தது; ஒசோன் பகுப்**பின்பொழுது அ**து பீணல் அசிற்றுலிடிகைட்டை (C₆H₅CH₂CHO) மாத்திரம் கொடுத்தது;
 - (i) ஐதரோகாபன் (A) யின் கட்டமைப்பை உய்த்தறிக.
 - ப் பீணேல் அசிற்ருவிடிகைட்டிவிருந்து, $C_6H_5CH_2COCH_8$ ஐ ஏவ்வாறு பெறுவீர்?
 - ால்) பீணவசிற்றுலிடிகைட்டிலிருந்து C₆H₅CH₂ CH(OH) COOH என்னும் சேர்வை (B) பை எவ்வாறு பெறுவீர்?
 - (**b**y) (B) ஆனது எத்தனே வடிவத்தில் இருக்கின்றது? அவை யாவை?
 - (v) (B) ஆனது (அ) OH (ஆ) COOH ஆகிய மூலிகங்களேக் கொண்டிருக்கிறது என்பதைக் காட்டுவதற்கு, என்ன பரிசோதனேகள் செய்வீர்?

விடை

5.

Aஇன் மூலக்கூற்றுச் சூத்திரத்தை (CH)N எனக.

∴ Aஇன் மூலக்கூற்று நிறை (13)N = 208. ∴ N = 16.

ஒட்சியேற்றத்தின்பொழுது, பெள்சோயிக்கமிலத்தை மட்டும் விளேவாக்கியதால், இது ஒ அருமேற்றிக்குச் சேர்வை ஆகும்.

ஒசோன் பகுப்பின்பொழுது C₆H₅ CH₂CHOஐ மட்டும் கொடுத்தது.

். Aயில் $C_6H_6CH_2CH=C$ தொகுதி உண்டு.

(i)
$$\therefore$$
 A $C_6H_5-CH_2-CH=CH-CH_2:C_6H_5$

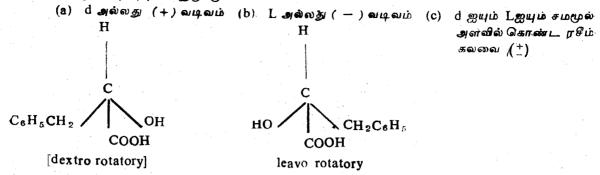
(ii)
$$C_6H_5-CH_2-C=O$$
 CH_8 Mg B_1 $C_6H_5-CH_2-C-OMgBr$.

$$C_6H_5-CH_2-C=O$$

$$CH_8$$

$$C_6H_5-CH_2-C=O$$

$$CH_8$$


$$C_6H_5-CH_2-C=O$$

$$C_6H_5-CH_2-C-OH$$

$$C_6H_5-CH_2-C-OH$$

$$CH_8$$

(iv) முன்று வடிவத்தில் இருக்கும்

(v) (அ) Bக்கு அமிலத்தின் முன்னிலேயில் அசற்றிக்கமிலத்தைச் சேர்க்கும்பொழுது, எசுத்தராக்கத் தாக்கத்தில் ஈடுபட்டு பழமணமுடைய எசுத்தர் உண்டாகும்:

அல்லது

Bஐ, சோடாச் சுண்ணும்புடன் சூடாக்கி, — COOH கூட்டத்தை அகற்றியபின் நீரற்ற விளேவுக்கு சோடியத்தைச் சேர்க்கும்பொழுது, ஐதரசன் வாயு வெளியேறும். எரியும் குச்சியைச் செலுத்தும்பொழுது பொப் என்ற சத்தம் உண்டாவதிலிருந்து வெளியேறிய வாயு ஐதரசன் ஏன் அறியலாம்.

குறிப்பு :

- (i) இங்கு COOH இற் தொழிற்பாட்டை அமோனியாவுடன் தாக்கியும் தடுக்கலாம்.
- (ii) சோடியத்தைச் சேர்த்து OH க்குப் பரிசோதிக்கும்பொழுது. கரைசல் உலர்நிலேயில் இருத்தல் வேண்டும். இல்லாவிடின், Na, நீருடன் தாக்கமுற்று ஐதரசணே வெளியேற்றும்.
- (ஆ) Bக்கு, Na₂ CO₃ நீர்க்கரைசலேச் சேர்க்கும்பொழுது, சுறுசு**றுப்**பான நுரைத்தெழுதலுடன் CO₂ வாயு வெளியேறும். இதைச் சுண்ணும்பு நீரினூடாகச் செலுத்தும்பொழுது பால் நிறமாவதிலிருந்து அறியலாம்.

அல்லது

அமிலத்தின் முன்னிஃயில், ஒரு அல்ககோலேச் சேர்க்கும்பொழுது பழமணமுடைய எசுத்தர் உண்டாகும்.

- 6' p குளோரோ அனிஃஃனப் பயபைடுத்திப் பின்வருவனவற்றை எவ்வாறு செய்வீர் என்பதைத் தேவையான பரிசோதனே விபரங்களுடன் விபரிக்க.
 - (1) நைதரசன், குளோரீன் ஆகியவை இருப்பதைக் காட்டல்.
 - (ii) முதல் அமீன் என்பதைக் காட்டுவதற்கான இரு சோதனேகள்.
 - (iii) பளிங்கு ஏமைட்டு ஒன்றைத் தயாரித்தல்.
 - iv) l 4 இரு குளோரோ பென்சீணத் தயாரித்தல்.
 - (V) p கு**ளோ**ரோ கைநைத்திரோ பென்சீணத் தயாரித்தல்.

விடை:

- 6. (i) 1973 விடை 6 (அ) ஐ பார்க்க.
 - (ii) (a) தரப்பட்ட அமீனின் ஒரு மூலுக்கு 0° 10°C யில் 1·1 மூல் NaNO₂, 3 3·5 மூல் HCl என்பன சேர்க்கப்பட்டு உண்டாகும் விளேவை, சோடியம் ஐதரொட்சைட்டின் முன் னிஃயில் பீஞேலுடன் இணக்கும்பொழுது செம்மஞ்சள் நிறமான ஈரசோச் சாயம் தோன்றும்.

(iii) (P)
$$Cl - C_6H_4 - NH_2$$

$$\begin{array}{c}
1 \cdot 1 \text{ (tph) } NaNo_2/2 \cdot 5 - 3 \text{ (tph) } HCl \\
\hline
5 - 10 ^{\circ}C
\end{array}$$
(P) $Cl - C_6H_4 - N_2Cl$

$$\begin{array}{c}
(1) CuCN \mid KCN \mid \\
(2) \land H
\end{array}$$

(P)
$$Cl-C_6H_4-COCl$$
 $\xrightarrow{G \neq D NH_3}$ (P) $Cl-C_6H_4-CONH_2$

(iv)
$$P-Cl-C_6H_4-NH_2$$

$$\begin{array}{c}
1.1 \text{ win } NaNO_2 \mid 2.5-3 \text{ win } HCl \\
\hline
5-10 \text{ °C}
\end{array}$$

$$\begin{array}{c}
P-Cl-C_6H_4-N_2Cl \\
\downarrow Cu_2Cl_2 \mid KCl/HCl \\
\hline
 \Delta H
\end{array}$$

$$\begin{array}{c}
P-Cl-C_6H_4-N_2Cl
\end{array}$$

விளேவுக்கரைசலேப் பகுதிபடக்காய்ச்சி வடித்தவின் மூலம் P— குளோரோ நைத்திரோ பெண்சீணப் பெற்றுக்கொள்ளலாம்.

- 7. C₇H ₈Oஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய (A) என்னும் அருமேற்றிக்குச் சேர்வை காரஞ்சேர் பொற்றுசியம் பேர்மங்கனேற்றுடன் தாக்கமுற்றுப் பென்சோயிக் கமிலம் (B) ஐக்கொடுத்தது.
 - (1) (A) இன் கட்டமைப்பு என்ன?
 - (ii) (A) யினது போன்ற மூலக்கூற்றுச் சூத்திரத்தை உடைய வேடுறை சேர்வை (C)ஆனது சலிசிலிக்கமிலம் (D) ஆக மாற்றப்படக்கூடியது. (C) யின்-கட்டமைப்பு என்ன?
 - (jii) C₇H₈Oவின் மூலக்கூற்றுச் சூத்திரத்தை உடை**ய வேறு அ**ருமேற்றிக்குச் சேர்வை களின் கட்டமைப்புக்களே எழுதுக.
 - (iv) சலிசிலிக்கமிலம் (D)யை (அ) அஸ்பிரின் (E), (ஆ) உவிந்தர் கிறீன் எண்ணெய் ஆகியவையாக எவ்வாறு மாற்றுவீர்?
 - (v) அஸ்பிரின் (E) இலிருந்து எவ்வாறு பீனேஃபை் பெறுவீர்?
 - (vi) பீணேஃ $P-OH-C_6H_4-N=N-C_6H_5$ ஆக மாற்றுவதற்கு வேண்டிய நிபந்தனே களேத் தருக ι
 - (vii) A, B, C ஆகியவற்றின் பெயரிடப்படாத மாதிரிகள் உமக்குத் தரப்படின், இரசாயவச் சோதனேகள் மூலம் அவற்றை எவ்வாறு இனங் காண்டிர்?

வீடை

- 7 (i) C₆H₅-CH₃-OH (பென்சைல் அல்ககோல்)
 - (ii) (O)—HO—C₆H₄—CH₈ (ஓதோ ஐதரொட்சு தொலுயீன் அல்லது ஓதோ கிறிசோல்:
 - (iii) M-HO-C₆H₄-CH₈ (மெற்று ஐதரொட்சி தொலுயின் அல்லது மெற்று இறிசோல்) P-HO-C₆H₄-CH₈ (பரா ஐதரொட்சி தொலுயின் அல்லது பரா கிறிசொல்) C₆H₅-O-CH₃ (பீணேயில் மெகயில் ஈதர் அல்லது அணிசொல்.)

(iv) (a) (O)—HOOC –
$$C_6H_4$$
 – OH
$$\begin{array}{c} (CH_8CO)_2O & \text{And} & \text{OH} \\ \hline CH_8COCI \\ \land H \end{array}$$
P – HOOC – C_6H_4 – O.OC·CH₈

(3) (O)—HO—
$$C_6H_4$$
—COOH $\frac{(1) CH_8OH}{(2) H^+/Q_{\#}DH_2SO_4}$ (O) HO— C_6H_4 —COOCH₈
(3) ΔH

(v) (O) HOOC-C₆H₄-OOC·CH₈
$$\frac{(1) \text{ Gent } \pi \text{ is sim} \text{ in } \psi \text{ if } C_6\text{H}_5-O-OC \cdot \text{CH}_8}{(2) \triangle \text{H}}$$

$$\triangle H \downarrow HOH \\ Ba(OH)_2$$
 $C_6H_5 - OH.$

(vi) 1 மூல் அணிலினுக்கு 1·1 மூல் NaNO₂, 2·5 — 3 மூல் HCl என்பவற்றை 5 — 10°C வெப்ப நிஃவயில் சேர்த்து **விஃனவுக்கரைசலுக்**கு NaOH முன்னிஃவயில் 1 மூல் பீளூஃச் சேர்க்கச் சாயம் உண்டோகும்.

$$\begin{array}{c} (1) & 1 \text{ (this)} & C_{6}H_{5} \cdot NH_{2} \\ (2) & 1 \cdot 1 \text{ (this)} & NaNO_{2} \\ \\ C_{6}H_{5}OH & & \\ \hline \\ (3) & 2 \cdot 5 - 3 \text{ (this)} & HCl & P-OH-C_{6}H_{4}-N=N-C_{6}H_{5} \\ (4) & 5-10^{\circ}C & \end{array}$$

(vii) B, நடுநிஃயான FeCl₃ உடன் பழுப்பு (Buff) நிற வீழ்படிவைக் கொடுக்கும். C நடுநிஃயான FeCl₃ உடன் ஊதாநிறத்தைக் கொடுக்கும். இந்நிறம் அமிலங்களால் அகற்றப்படும்.

A அமிலத்தின் முன்னிலேயில் காபொட்சிவிக் கமிலங்களுடன் பழ மணமுடைய எசுத்தரைக் கொடுக்கும்.

- 8 (i) பின்வருவனவற்றின் கட்டமைப்புக்களேயும் பெயர்களேயும் தருக.
 - (அ) C_4H_6 ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய இரண்டு அல்கைன்கள்.
 - (ஆ) C₄H₈O₂ ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய நான்கு எஸ்**தர்கள்.**
 - (இ) C₇H₇Br ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய நான்கு அருேமற்றிக்குச் சேர்வைகள்.
 - (r) $C_5H_{10}O$ ஐ மூலக்கூற்றுச் குத்திரமாகவுடையதும், கனிசாரோவின் தாக்கத்தைத் தரக் கூடியதுமான காபனேல் சேர்வை.
 - (ii) மேற்படி (i) (அ) இலுள்ள இரு சமபகு தியங்களேயும் எவ்வாறு வேறுபிரித்துக்காணுவீர்?
 - (iii) மேற்படி (i) \((\varphi\) இலுள்ள சேர்வை கணிசாரோவின் தாக்கத்திற்குள்ளாகும்போது பெறப் படும் விளேவுகளேத் தருக.
 - (iv) மேற்படி (i) (இ) யிலுள்ள ஏதேனும் ஒரு சமபகுதியத்திலிருந்து, எவ்வாறு C_6H_5 CH3ஐப் பெறுவீர்?
 - (V) மேற்படி (i) (ஆ)இலுள்ள எந்த எஸ்தர்கள் நீர்பகுப்பின் பொழுது அயடோபோம் தாக்கத்தைத் தரக்கூடிய அல்ககோல்களேத் தரும்?

(ii)
$$CH_3 - CN = C - CH_3 - 3\mu \dot{D} - 2 - 2m \dot{m}$$
.

O

ஆ. (i) H-C-O(CH₂)₂ CH₈ நேர்புறப்பையில் போமேற்.

0

(ii) H-C—O CH(CH₈)₂ சமபுறப்பையில் போமேற்.

(iii) CH₃—C—O C₂H₅ எதயில் அசற்றேற்.

(iv) C₂H₅_C—OCHՑ மெதமில் புறப்பியோனேற்.

(இ) (i) $C_6H_5-CH_2$ Br பென்சைல் புரோமைட்டு

(ii) $O-Br-C_6H_4-CH_8$ ஒதோ புரோமோ தொலுயீன்

(iii) P—Br—C H₄—CH₈ பரா புரோமோ தொலுயின்

(iv) M—Br—C₆H₄—CH₈ மெற்கு புரோமோ **தொலுயின்**.

CH₈
|
(#) (i) CH₈-C-CHO 2:2, இரு மெதயில் புறப்பணல்
|
CH₃

குறிப்பு : CH₈ – CH₂ – CH · CHO என்னும் சேர்வையும் **கணிசாரோவின் தாக்கத்தை**க் கொடுக்கும். | | CH₈

- (ii) இரு சேர்வைகளுக்கும் அமோனியாசேர் கியூப்பிரஸ் குளோரைட்டுச் சேர்க்கும்பொழுது பியூற் - 1 - ஐனில் செங்கபிலநிற வீழ்படிவு தோன்றும். பியூற் - 2 - ஐனில் தோன்குது;
- (iii) $(CH_3)_8 C \cdot CH_2OH_2 \cdot \omega$, $(CH_3)_8 \cdot C \cdot CO_2 \cdot Na^+$
- (iv) பய**ன்படு**த்தப்படும் சேர்வை பென்சைல் புரோமைட்டு.

$$C_{2}H_{5}-CH_{2}-Br \xrightarrow{\text{symba}Gan \text{ in } \mid \text{ fir } KCN} C_{6}H_{5} CH_{2} CN$$

$$\downarrow H_{2}O/H^{+}$$

$$C_{6}H_{5}-CH_{8} \xrightarrow{\text{Gan L } n \text{ is sim } \text{conv} \text{ in } U} C_{6}H_{5}-CH_{2}-COOH.$$

$$V) \text{ (a) } H-C$$

$$O \text{ CH } (CH_{3})_{2}$$

$$O \text{ CH } (CH_{3})_{2}$$

- 9. தரப்பட்ட ஒரு சேர்வை, பின்வருவனவற்றுள் ஏதோ ஒன்று என நம்பப்படுகிறது.
- (A) CH_2O . (B) C_6H_5-OH (C) C_6H_5-COCI .
- (i) இச்சேர்வையை நீர் இனங்காணுவதற்குக் தேவையான மிகக்குறைந்த எண்ணிக்கையான இரசாயனச் சோதனேகளேத் தருக.
- (ii) (அ) (A) கைத்தொழில் ரீதியில் எவ்வாறு பெறப்படுகிறது?
 - (ஆ) (A) யினது இரு கைத்தொழில் உபயோகங்களேத் தருக
- $(ext{iii})$ (C) ஐ எவ்வாறு எந்நிபந்தனேகளில் (அ) C $_6 ext{H}_5$ CHO (ஆ) C $_6 ext{H}_5 ext{CO}$ C $_6 ext{H}_5$ ஆகியவை யாக மாற்றுவீர்?
- (iv) (B) யிலிருந்து C₆H₅·SO₃H ஐ எவ்வாறு பெறுவீர்?
- (V) **பென்சல்டிசைட்டு** (jii) அ. பீ**ேணல் B ஆ**கியவற்றைக் கொண்ட கலவையை எவ்வாறு அதன் தாய் கூறுகளாகப் பிரிப்பீர்?

ലിതു 🗀 :

- 9. (i) (a) A, B, C என்பவற்றின் மாதிரிகளுக்குப் பீலிங்கின் கரைசலேச் சேர்க்கும்பொழுது Aயில் செந்நிற வீழ்ப**டிவு Cu ,O** தோன்றும்.
 - (b) நடுநிலேயான FeCl₃ சேர்க்கும்பொழுது Bயில் ஊதாநிறம் தோன்றும்.
 - (c) அமிலத்தின் முன்னிஸேயில் C₂H₅OH ஐ சேர்க்கும்பொழுது Cயில் ஒரு பழமணம் அவதா னிக்கப்படும். இம்மூன்று பரிசோதனேகளிலுமிருந்து A, B. C. ஐ இனம் காணலாம்.
 - (ii) (அ) CH₂O இன் கைத்தொழிற் தயாரிப்பு:

- (ஆ) (i) போமலின் தொகுப்பதற்குப் பயன்படுத்தப்படும். A. இது ஆய்வுகூடத்தில் பொருட்களேப் பழுதடையாமல் பாதுகாப்பதற்குப் பயன்படுத்தப்படும்:
 - (ii) அறுவுதெலின் நாலமீன் H. M T. A. (Hexa Methyline tetra amine) தயாரிப்பதற்குப் பயன்**ப**டும். இ*து ஒ*ரு சாயமாகும்.

(iii) (அ)
$$C_6H_5$$
 $COCl$ $\xrightarrow{H_2 \mid Pd \mid BaSO_4}$ C_6H_5 CHO குயினேலின் /S. நீரற்ற நிலே

(48)
$$C_6H_5 \cdot COCl \xrightarrow{1 \text{ (this } C_6H_6} C_6H_5 - C - C_6H_5$$

$$C_6H_5 - C - C_6H_5$$

$$f_5 \dot{\pi} u_{\mathcal{B}} \dot{u}_{\mathcal{A}}$$

(iv)
$$C_6H_5-OH$$

$$\begin{array}{c} (1) & ZN & \underline{s}_{1} & \underline{s}_{2} \\ \hline (2) & \Delta H \\ \hline (3) & \underline{s}_{1} & \underline{s}_{2} & \underline{s}_{3} & \underline{s}_{4} \\ \hline \end{array} \rightarrow \begin{array}{c} C_6H_6 & \underline{\hspace{0.2cm}} & \underline{\hspace{0.2cm}}$$

(V) கலைவைக்கு NaHSO₃ சேர்க்கப்படும்பொழுது, அவ்டிகைட்டு, இரு சவ்பைற்று கூட்டல் சேர்வை யாக வீழ்படிவாக்கப்படும். பின் வினேவை வடிகட்டி. ஈதர் கொண்டு பிரித்தெடுத்து ஆவியாக் கும்பொழுது பீனேல் பெறப்படும். வீழ்படிவுக்கு, அமிலம், NO 2CO3 நீர்க்கரைசல் சேர்த்து ஆவியாக்கும்பொழுது பென்சல்டிகைட் பெறப்படும் .

க. பொ. த. (உயர்தரம்) பயிற்சிப் பரீட்சை

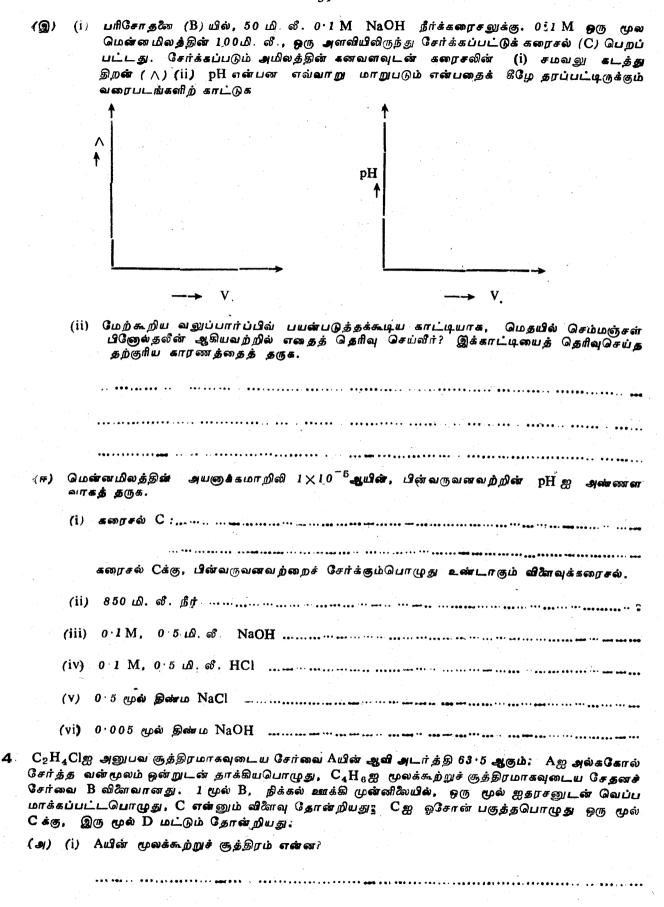
இரசாயனம் II

.டிலக்க	.		ரேம் : 3 மணி
	பகுதி A	.— அமைப்புக் கட்டுரை	
(i)	நான்கு வி ருக்களுக்கும் விடை	- Ֆ (Ђፚ .	•
(ii)		ரப்பட்டிருக்கு ம் இடைவெளியில் உம	து விடைகளே எழுதுக.
A, E	3, C ஆகிய மூலகங்களின் அணு	எண்கள் முறையே 16;7, 29	ஆகும்.
(4)	A, B, C என்பவற்றின் இலத்தி வடிவத்தில் எழுதுக:	ரன் அமைப்புக்குள, வழக்கமோன	151, 251என்ற
	(A)	B) (C)	
(ஆ)"		ர முறையே உண்டாக்கும் சேர்வ வார்களை (கூற்றுர்கு) வரவர்	
	[A, B எண்பவற்றின் இலத்	வழக்கமான (குற்றுத்தா) வடிவைத் திரன்குளக் தேற்றினுலும் (.), ஜ வேலு ஒடுகெளின் இலத்திரன்கேள் ம	2தேரசனின் இலத்திரன்கவே
	X	Y:	
	(ii) x, y எ ன்ப வற்றின் கே	கத்திரகணித வடிவங்களே வரைகை.	
	X :	Y :	
			•
		ன்பென அமில இயல்படையைதா அல் நின் அயஞக்கத்தையும், அமிலமூல	
	4 * * * * * * * * * * * * * * * * * * *		
		teriorismo de la companya de la com La companya de la co	
		· • • • • • • • • • • • • • • • • • • •	.,
•			
w	************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

(A)	HaAO4, HBO என்பன A. B எ	ுன் பவற்றின் ஒட்சி அ மிலங் களா குப்), ·

இலத்திரன்கள் தேவையில்லே :)

8


						•		
							,	

					, 			
•		***************************************		,		•	• • •	
	(iii)	மேற்கூறிய நோக்கலுக்கான	காரண த்தை	А, В	எனபவுறை	றுகை இறை	த்தரண	அமைபளைபக
		கொண்டு விளக்குக.						
			· · · · · · · · · · · · · · · · · · ·	***			****	

		*						••••••
		******		• • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •			•••
						•		
			*****	· • • • • • • • • • • • • • • • • • • •				
	(iv)	A யின் வேறு இரு ஓட்சி .	அமிலங்களி ன்	& <u>L</u>	மைப்புக்கவே	ாத் தருக	i. ·	
		(A)		B)				
			•	,				
(#)	(i)	பொற்ருசியத்தி ன் அ ணுஎண் கீன உருவாக்காகு: ஆனல்	19. பொற்று செப்பு உருவ	சியம் பாக்குகி	ஒ ரு பொழு ின்றது .	தும் இரு இதை இம	வலுவு மேல்கா	ள்ள நேரயன் ங் தளின் இலத்
(#)	(i)	பொற்ருசியத்தின் அணுஎண் களே உருவாக்காது. ஆஞல் திர ன் அமைப்பைக்கொண்டு	செப்பு உருவ	சியம் பா க்கு	ஒ ருபொழு ின்றது .	தும் இரு இதை இட	പളാപു സോകാ	ள்ள நேரயன் ங் சுளின் இலத்
(#)	(i)	களே உருவாக்காது. ஆஞல்	செப்பு உருவ	சியம் பாக்கு சி	ஒ ருபொழு ென்றது. ¦	தும் இரு இதை இட	வலுவு மேல்கா	ள்ள நேரய ன் ங் களின் இலத்
(#)	(i)	களே உருவாக்காது. ஆஞல்	செப்பு உருவ	சியம் பாக்கு செ	ஒ ருபொழு ின்றது. {	தும் இரு இதை இட	வ லுவு மேல்கர	ள்ள நேரயண் ங்களின் இலத்
(#)	(i)	களே உருவாக்காது. ஆஞல்	செப்பு உருவ	ு இயம் பொ க்கு இ	ஒருபொழு இன்றது. {	தும் இரு இதை இட	வ லுவு மேல்கர	ள்ள நேரயண் ங்களின் இலத்
(#)	(i)	களே உருவாக்காது. ஆஞல்	செப்பு உருவ	ு இயம் போக்கு இ	ஒருபொழு என்றது. إ	தும் இரு இதை இப	வலுவு மேலக்!	ள்ள நேரயண் ங்களின் இலத்
(#)	(i)	களே உருவாக்காது. ஆஞல்	செப்பு உருவ	ு இயம் பாக்கு இ	ஒரு பொழு இன்றது . إ	தும் இரு இதை இப	ച ഉ വയുട	ள்ள நேரயண் ங்களின் இலத்
(#) _.	(i)	களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு	செப்பு உருவ	பாக்கு <i>இ</i>	ஒரு பொழு ென்றது .	இதை இப 	ച ബ ജ	ள்ள நேரயண் ங்களின் இலத்
(#)	(i)	களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு	செப்பு உருவ விளக்குக	பாக்கு <i>இ</i>	ின்றது. {	இதை இப 	வ லுவுக்	ள்ள நேரயண் ங்களின் இலத்
(#)	(i)	களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு	செப்பு உருவ விளக்குக	பாக்கு <i>இ</i>	ின்றது. {	இதை இப 	வ லுவு	ள்ள நேரயண் ங்களின் இலத்
(#)	(i)	களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு	செப்பு உருவ விளக்குக	பாக்கு <i>இ</i>	ின்றது. {	இதை இப 	வ லுவு	ள்ள நேரயண் ங்களின் இலத்
(#) _]		களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு	செப்பு உருவ விளக்குக.		ின்றது. {	9.60 5 9 €	வ லுவு	ள்ள நேரயண் ங்களின் இலத்
(#)	(i)	களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு	செப்பு உருவ விளக்குக.		ின் றது	9.60 5 9 €	வ லுவுக்	ள்ள நேரயண் ங்களின் இலத்
(#) _.		திரன் அமைப்பைக்கொண்டு இரன் அமைப்பைக்கொண்டு	செப்பு உருவ விளக்குக		ின் றது	இதை இப	ம் மூல்க	ங்களின் இலத்
(#)	(i) (ii)	களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு	செப்பு உருவ விளைக்குக	ப திண்	மம். ஆளு	இதை இப்	ம் மூல்க எளி இக்	ங் களின் இலத்
(#) _.		திரன் அமைப்பைக்கொண்டு இரன் அமைப்பைக்கொண்டு	செப்பு உருவ விளைக்குக	ப திண்	மம். ஆளு	இதை இப்	ம் மூல்க எளி இக்	ங் களின் இலத்
(#) 		களே உருவாக்காது. ஆஞல் திரண் அமைப்பைக்கொண்டு 	செப்பு உருவ விளக்குக _ நுகுநிலே கூடிப இலத்திரன் எ	பாக்கு இ	மம். ஆஞ ாவு அடிப்ப	இதை இட ல் CCl4 டையில்	ம் மூல்க எளி இவ் விளக்கு	ங் களின் இலத்
(#)		களே உருவாக்காது. ஆஞல் திரண் அமைப்பைக்கொண்டு 	செப்பு உருவ விளைக்குக	பாக்கு இ	மம். ஆஞ ாவு அடிப்ப	இதை இப்	ம் மூல்க எளி இவ் விளக்கு	ங் களின் இலத்
(#)		களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு 	செப்பு உருவ விளக்குக நாக்குக நாக்குக இலத்திரன் வ	பாக்கு இ	மம். ஆஞ வே அடிப்ப	இதை இட ல் CCl4 கைடயில்	ம் மூல்க எளி தின் விளக்கு	ங்களின் இலத் ம் ஆவியாகும் க
(#)		களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு 	செப்பு உருவ விளக்குக _ நுகுநிலே கூடிப இலத்திரன் எ	பாக்கு இ	மம். ஆஞ ாவு அடிப்ப	இதை இட ல் CCl4 கைடயில்	ம் மூல்க எளி தின் விளக்கு	ங்களின் இலத் ம் ஆவியாகும் க
(#)		களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு 	செப்பு உருவ விளக்குக நாக்குக நாக்குக இலத்திரன் வ	பாக்கு இ	மம். ஆஞ வே அடிப்ப	இதை இட ல் CCl4 கைடயில்	ம் மூல்க எளி தின் விளக்கு	ங்களின் இலத் ம் ஆவியாகும் க
		களே உருவாக்காது. ஆஞல் திரன் அமைப்பைக்கொண்டு 	செப்பு உருவ விளக்குக நாக்குக நாக்குக இலத்திரன் வ	பாக்கு இ	மம். ஆஞ வே அடிப்ப	இதை இட ல் CCl4 கைடயில்	ம் மூல்க எளி தின் விளக்கு	ங்களின் இலத் ம் ஆவியாகும் க

(-),		ப்பட்டுள்ள உலோகங்களின் ஒரு இயற்கைத் தாதையும், அவ் இயற்கைத்தா சாயனச் சூத்திரத்கைதயும் தருக.
∢ i)	Mg:	
•		
Ći) Na:	**************************************
-	, .	
(iii	Fe :	
	,	
(iv)	7n ·	
(11)		344 141 111 444 141 144 144 144 144 144
(v)	Mn	MAG 20010 - 500 101 102 000 000 000 000 000 000 000 0
(*)	14111	MAG 100-10 200 201 000 000 100 101 000
(4) (3	y) இல் உ	டள்ள மூலகங்கள் எவ்வாறு பிரித்தெடுக்கப்படுகின்றது எனக் கூறுக.
(i	Mg:	- 1.0 - 1.0
12,		

# 200		
(11)	Na:	\$20.200 *** *** *** *** *** *** *** *** ***
		000 -01 has cope dos - 1. ter 000 pas cores, 110 til - 100 050 177 011 cas 111 til cope de 000 00 coltra cores cores con ter cor
		900 *** hat see see \$10 - 1- 197 *** pag see 900 07 ***
>	.	
(111)	re:	
		500 a control of the
(jv)	Zn;	
		200 to the day to 200 t
(V)	Mn	
• •		
· ·		
((3) GL	மல ல ரும	மூலகங்கள் நீரை எவ்வாறு தாக்கும்?
(i) Mg:	
(ii/	Na	
	*	
		- CARC SECOND TOP ONE TO THE SECOND TO THE DOC TO MAKE HAVE AND THE DOC THE BOX COP THE SECOND CONTRACT TO AND THE COP
(li,	i Fe:	

	(iy)	Zn:	******						
				*** *** *****			* *** *** *** ***	** *** *** *** *** ***	• • • • • • • • • • • • • • • • •
	(A)	Mn:	*** *** *** *** *** ***				************		
			***************				. 	.,	,
F)	(a)	ஈரப்ப	ற்றுள்ள வளியில்	் பின்வ ரும	் உலோக	ங்களே வைக்	கும்பொழுத	பு என்ன நி	டூம் ம் ?
	400								
	(1)	Mg:	**************	***** ***	*********		*** *** *** ***		*** *** *** *** ***
			**********					******	
		10							
			*** ****** ********				• • • • • • • • • • • • • • • • • • • •		
	/245	NT.	***********	•					
	(11)	Na:	***************************************	*** *** *** ***	9 9 9 9 ^{7 9 1} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	··· · · · ·	• • • • • • • • • • • • • • • • • • • •	** *** 4884*2 555 48	
			*******				• • • • • • • • • • • • • • • • • • • •	*****	
							5 (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
	(iii)	Fe:	*** **** *** ****	*** *** *** ***	***********		• • • • • • • • • • • • • • • • • • • •	*********	ved also see 111 17
			*** *** *** *** ***						
	(iv)	Zn:			·				
	(,								
			*** *** *** *** *** ***		. *** *** *** ***		· ****** · ** · · · · · · · · · · · · ·		
		· ,							
	(b)	Fe æ,	Mg 2L de @ de		ിഥിல് അഖദ	கும்பொழு,	து Fe க்கு யா	து நிகழும்?	இதறகாவ
			<i>காரணத்தைத்</i>	<i>த</i> ரு க ்					
						** *** *** *** ***			
				*** *** *** ***			•••	:	
			*****	*********		,			
							-		
				*** *** *** *** ***				********	
و	(i)	NaCl,	FeCl ₈ SiCl ₄	என்பன	நீருடன் அ	னு பவிக்கும்	தாக்கங்களே	ஒப்பிடுக்.	•
	(-)					- 0			
							*	•	
		MM				•••••			
		*** *** ** *				94 see	₩ 107 4 <u>6</u> 0 802 802 804		7 *** ••• ••• ••• ••
	•							,	
		*** *** *** .				*** *** *** ***	*** *** *** *** ***	** *** ** *** *** **	•••
						,			7
		*** *** *** *			·· · · · · · · · · · · · · · · · · · ·	*** *** *** ***		***	
						14 ⁵⁸⁸ 682 557 1154 116		1 	
				1 7 7 5 8 9 8 8 8 6 6 6 6 6	**** *** *** *** **	10 TT 660 FSF PRF 860		** ** * 40* *** ***	
			, 					, _	

	றும்போது யாது நடைபெறும்?
	annum trans week you the was week no manage one conserved the same one was not no annum on the same on the same week done and the same on an angle on gap we
رننن ُ	நீரேற்றப்பட்ட FeCl _இ இவிருந்து , நீரற்ற Fe Cl₈ ஐ தயாரிப்படைத க் காட்டும் சமன்பாட்
(,	நிப ந்தனே களுடன் தருக ்
,	***************************************
	······································

	• • • • • • • • • • • • • • • • • • • •
. •	***************************************
(i)	
(i)	Zn, Mg என்பவற்றின் ஓட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தோக்கும்?
(i)	
(i)	Zn, Mg என்பவற்றின் ஓட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தோக்கும்?
(i)	Zn, Mg என்பவற்றின் ஒட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தோக்கும்?
(i)	Zn, Mg என்பவற்றின் ஓட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தோக்கும்?
	Zn, Mg என்பவற்றின் ஒட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தோக்கும்?
	Zn, Mg என்பவற்றின் ஒட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தோக்கும்?
	Zn, Mg என்பவற்றின் நட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தொக்கும்?
	Zn, Mg என்பவற்றின் ஒட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தோக்கும்?
	Zn, Mg என்பவற்றின் நட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தொக்கும்?
	Zn, Mg என்பவற்றின் நட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தொக்கும்? Fe செறிந்த HnO ₃ ஐ எவ்வாறு தாக்கும்? ஏன்?
(ii)	Zn, Mg என்பவற்றின் நடைகைட்டுக்கள் NaOH ஐ எவ்வாறு தாக்கும்? Fe செறிந்த HnO3ஐ எவ்வாறு தாக்கும்? ஏன்?
(ii)	Zn, Mg என்பவற்றின் நட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தாக்கும்? Fe செறிந்த HnO ₃ ஐ எவ்வாறு தாக்கும்? ஏன்? i) Mn இன் தாதிலிருந்து, KMNO ₄ ஐ எவ்வாறு தயாரிப்பீர் என்பதைச் சுருக்கமா
(ii)	Zn, Mg என்பவற்றின் நடைகைட்டுக்கள் NaOH ஐ எவ்வாறு தாக்கும்? Fe செறிந்த HnO3ஐ எவ்வாறு தாக்கும்? ஏன்?
(ii)	Zn, Mg என்பவற்றின் நட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தாக்கும்? Fe செறிந்த HnO ₃ ஐ எவ்வாறு தாக்கும்? ஏன்? i) Mn இன் தாதிலிருந்து, KMNO ₄ ஐ எவ்வாறு தயாரிப்பீர் என்பதைச் சுருக்கமா
(ii)	Zn, Mg என்பவற்றின் ஓட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தாக்கும்? Fe செறிந்த HnO ₃ ஐ எவ்வாறு தாக்கும்? ஏன்? i) Mn இன் தாதிலிருந்து, KMNO ₄ ஐ எவ்வாறு தயாரிப்பீர் எண்பதைச் சுருக்கமா தருக. [சமன்பாடுகள் வேண்டியதில்லேட்]
(ii)	Zn, Mg என்பவற்றின் நட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தாக்கும்? Fe செறிந்த HnO ₃ ஐ எவ்வாறு தாக்கும்? ஏன்? i) Mn இன் தாதிலிருந்து, KMNO ₄ ஐ எவ்வாறு தயாரிப்பீர் என்பதைச் சுருக்கமா
(ii)	Zn, Mg என்பவற்றின் ஓட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தாக்கும்? Fe செறிந்த HnO ₈ ஐ எவ்வாறு தாக்கும்? ஏன்? i) Mn இன் தாதிலிருந்து, KMNO ₄ ஐ எவ்வாறு தயாரிப்பீர் என்பதைச் சுருக்கமா தருக. [சமன்பாடுகள் வேண்டியதில்லேட்]
(ii)	Zn, Mg என்பவற்றின் ஓட்சைட்டுக்கள் NaOH ஐ எவ்வாறு தாக்கும்? Fe செறிந்த HnO ₃ ஐ எவ்வாறு தாக்கும்? ஏன்? i) Mn இன் தாதிலிருந்து, KMNO ₄ ஐ எவ்வாறு தயாரிப்பீர் எண்பதைச் சுருக்கமா தருக. [சமன்பாடுகள் வேண்டியதில்லேட்]

(• 7)	(i) மேற்படி இருக்கும்	தாக்கம் நி அயன்களி	நிகழும்பொ ென் எண்ன	'ழுது, சோக ளிக்கை எவ்வ	ர்கப்படும் அ பாறு மாறு	அமிலத்தா னு படும் எனக்	களவளவுட கூறுக்.	our, as our j	<i>∓</i> 601€
			ı						1.
	அயன் எண்ணிக்கை								
,	# 1 9900 # 0001 CD # 001 CD	-							
		-							
					•				
		சேர்.	. அமிலத்தி	்ன் கேணவளை					
	(ii) நடுநின	ப்புள்ளியில்	ம் உள்ள	வி <i>ளேவுக் க</i> ள	ரசலின் செ	றிவு என்ன	:		
	*** *** ***	**** ********	••••••		16 120 247 147 147 147	• • • • • • • • • • • • • • • • • • • •	*************	*********	• • • •
	(iii) (அ) (ii) இல் `உள்	ள்ள கமைரேச				.′		
		.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	லின் உறை[நில் என்ன?		***************************************		
(B)	(iii) (அ) (மற்றுமோர் (A) இல் சே நீர்க்கரைசன்	முகவையி முகவையி	ல் இருக்கு அமிலத்த	வின் உறை! ம் 50 மி. லீ	நிலே என்ன? ற் 0·1 M	NaOH Brid	கரைசலுக்கு	 ந, பரிசே	
(B)	மற்றுமோர் (A) இல் சே நீர்க்கரைசெல் பெரிசோதேணே	முகவையி ர்க்கப்பட்ட சேர்க்கப்ப (A)ஐயும்,	ல் இருக்கு அமிலத்தி பட்டது. (B) ஐயும்	வின் உறை! ம் 50 மி. லீ	நில் என்ன? ந் 0·1 M ணவளவு 0°	NaOH நீர்க் ப M ஒரு மூ	கரைசலுக்கு நல மென்ன	ந், பரிசே மிலமொல	ன் றி
	மற்றுமோர் (A) இல் சே நீர்க்கரைசெல் பெரிசோதனே வேறுபாடா	முகவையி ர்க்கப்பட்ட சேர்க்கப்ப (A)ஐயும், ன நோக்க	ல் இருக்கு அமிலத்தி பட்டது. (B) ஐயும் ஸ்கீள அ	வின் உறை ம் 50 மி. வீ ென் அதே உ	நில் என்னே? ற் 0·1 M னவளவு 0° மாணவன், ன்:	NaOH நீர்க் 1 M ஒரு மூ	கரைசலுக்கு நல மென்ன	ந், பரிசே மிலமொல	ன் றி
	மற்றுமோர் (A) இல் சே நீர்க்கரைசெல் பெரிசோதனே வேறுபாடா	முகவையி ர்க்கப்பட்ட சேர்க்கப்ப (A)ஐயும், ன நோக்க	ல் இருக்கு அமிலத்தி பட்டது. (B) ஐயும் ஸ்கீள அ	வின் உறை ம் 50 மி. வீ ென் அதே உ செய்த ஒரு வதானித்தால	நில் என்னே? ற் 0·1 M னவளவு 0° மாணவன், ன்:	NaOH நீர்க் 1 M ஒரு மூ	கரைசலுக்கு நல மென்ன	ந், பரிசே மிலமொல	ன் றி
	மற்றுமோர் (A) இல் சே நீர்க்கரைசெல் பெரிசோதனே வேறுபாடா	முகவையி ர்க்கப்பட்ட சேர்க்கப்ப (A)ஐயும், ன நோக்க	ல் இருக்கு அமிலத்தி பட்டது. (B) ஐயும் ஸ்கீள அ	வின் உறை ம் 50 மி. வீ ென் அதே உ செய்த ஒரு வதானித்தால	நில் என்னே? ற் 0·1 M னவளவு 0° மாணவன், ன்:	NaOH நீர்க் 1 M ஒரு மூ	கரைசலுக்கு நல மென்ன	ந், பரிசே மிலமொல	ன் றி
	மற்றுமோர் (A) இல் சே நீர்க்கரைசெல் பெரிசோதனே வேறுபாடா	முகவையி ர்க்கப்பட்ட சேர்க்கப்ப (A)ஐயும், ன நோக்க	ல் இருக்கு அமிலத்தி பட்டது. (B) ஐயும் ஸ்கீள அ	வின் உறை ம் 50 மி. வீ ென் அதே உ செய்த ஒரு வதானித்தால	நில் என்னே? ற் 0·1 M னவளவு 0° மாணவன், ன்:	NaOH நீர்க் 1 M ஒரு மூ	கரைசலுக்கு நல மென்ன	ந், பரிசே மிலமொல	ன் றி
	மற்றுமோர் (A) இல் சே நீர்க்கரைசெல் பெரிசோதண வேறுபாடா	முகவையி ர்க்கப்பட்ட சேர்க்கப்ப (A)ஐயும், ன நோக்க	ல் இருக்கு அமிலத்தி பட்டது. (B) ஐயும் ஸ்கீள அ	வின் உறை ம் 50 மி. வீ ென் அதே உ செய்த ஒரு வதானித்தால	நில் என்னே? ற் 0·1 M னவளவு 0° மாணவன், ன்:	NaOH நீர்க் 1 M ஒரு மூ	கரைசலுக்கு நல மென்ன	ந், பரிசே மிலமொல	ன் றி
	மற்றுமோர் (A) இல் சே நீர்க்கரைசெல் பரிசோதனே வேறுபாடா (i) இவ்வி	முகவையி ர்க்கப்பட்ட சேர்க்கப்ப (A)ஐயும், ன நோக்க ரு நோக்க	ல் இருக்கு அமிலத்தி பட்டது. (B) ஐயும் ல்களே அல	வின் உறை ம் 50 மி. வீ ென் அதே உ செய்த ஒரு வதானித்தால	நில் என்னே? ற் 0·1 M னவளவு 0° மாணவன், ன்: தல் கூடும்	NaOH நீர்க் 1 M ஒரு மூ இந் நிகேழ்	கரைசலுக்கு நல மென்ன	ந், பரிசே மிலமொல	ன் றி
	மற்றுமோர் (A) இல் சே நீர்க்கரைசெல் பரிசோதனே வேறுபாடா (i) இவ்வி	முகவையி ர்க்கப்பட்ட சேர்க்கப்ப (A)ஐயும், ன நோக்க ரு நோக்க	ல் இருக்கு அமிலத்தி பட்டது. (B) ஐயும் ல்களே அல	வின் உறைை ம் 50 மி. வீ ென் அதே உ செய்த ஒரு பதானித்தார தாக இருத்	நில் என்னே? ற் 0·1 M னவளவு 0° மாணவன், ன்: தல் கூடும்	NaOH நீர்க் 1 M ஒரு மூ இந் நிகேழ்	கரைசலுக்கு நல மென்ன	ந், பரிசே மிலமொல	ன் றி
	மற்றுமோர் (A) இல் சே நீர்க்கரைசெல் பரிசோதனே வேறுபாடா (i) இவ்வி	முகவையி ர்க்கப்பட்ட சேர்க்கப்ப (A)ஐயும், ன நோக்க ரு நோக்க	ல் இருக்கு அமிலத்தி பட்டது. (B) ஐயும் ல்களே அல	வின் உறைை ம் 50 மி. வீ ென் அதே உ செய்த ஒரு பதானித்தார தாக இருத்	நில் என்னே? ற் 0·1 M னவளவு 0° மாணவன், ன்: தல் கூடும்	NaOH நீர்க் 1 M ஒரு மூ இந் நிகேழ்	கரைசலுக்கு நல மென்ன	ந், பரிசே மிலமொல	ன் றி
	மற்றுமோர் (A) இல் சே நீர்க்கரைசெல் பரிசோதனே வேறுபாடா (i) இவ்வி	முகவையி ர்க்கப்பட்ட சேர்க்கப்ப (A)ஐயும், ன நோக்க ரு நோக்க	ல் இருக்கு அமிலத்தி பட்டது. (B) ஐயும் ல்களே அல	வின் உறைை ம் 50 மி. வீ ென் அதே உ செய்த ஒரு பதானித்தார தாக இருத்	நில் என்னே? ற் 0·1 M னவளவு 0° மாணவன், ன்: தல் கூடும்	NaOH நீர்க் 1 M ஒரு மூ இந் நிகேழ்	கரைசலுக்கு நல மென்ன	ந், பரிசே மிலமொல	ன் றி

	(ii)	A, B, C, D என்பவற்றின் கட்டமைப்புக்களேத் தருக.
		(A) (B)
		(C)(D)
(কী)	(i)	Aயின் அதே மூலக்கூற்றுச் சூத்திரத்தை உடைய, அல்ககோல் சேர்ந்த வன்மூலம் ஒன்றைத் தாக்கி, B உடன் சமபகுதியமாயமைந்த E என்னும் ஒரே வினேவைக் கொடுக்கக்கூடிய தான் மூன்று சேர்வைகளின் கட்டமைப்புக்களேத் தருக,
	/ (i)	(ii) (iii)
	(ii)	
	(iii)	Bஐயும், Eஐயும் வேறு யிரித்துக்காண்பதற்கான, ஒரு தாக்கத்தினே இரசாயனச்சமன்பாட் டால் தருக.

(@)	Bg F G	நீர்பகுத்தபொழுது, C₄H ₈ O என்னும் மூலக்கூற் றுச் சூத்திரத்தை உடைய சேர்வை தான்றியது.
		F இன் கட்டமைப்பையும், பெயரையும் தருக.
	(i i)	Bஇன் நீர்பகுப்பின்பொழுது, பயன்படுத்தப்பட்ட சோதணேப் பொருட்களேயும், நிபந்தணே களேயும் தருக.
	(iii)	F இன் மூலக்கூற்றுச் சூத்திரத்தை உடைய வேறு இரண்டு சேர்வைகளின் கட்டமைப்புக் களேயும் பெயர்களேயும் தருக:
(F)	(i)	மேலே தரப்பட்ட பெயரிடப்படாத எச்சேர்வைகள் அயடோபோம் தாக்கத்தைக் கொடுக்கும்?
		ு இது இது இது இது இது இது இது இது
	.(ii)	மேலே பெயரிடப்படா <i>த</i> சேர்வை ஒன்றுடன் தொடங்கி, CH ₃ —CH(OH) — CH ₂ CHO என்னும் சேர்வை G ஐத் தொகுக்க:
	(iii)	G இல் சமச்சீரற்ற கா பன் அ ணு உண்டு என்பதற்கு என்ன சான்று உண்டு?

	(iv)	G ஐ அயடுனுடன் சூடாக்க, இரண்டு சமபகுதிய விணேவுகள் H, I தோன்றின் H, I என்பை வற்றின் கட்டமைப்புக்களேத் தருகை.
		н

க பொ. த. (உயர்தரம்) பயிற்சிப் பரீட்சை

இரசாயனம் II

B கட்டுரை

- (i) நான்கு விணக்களுக்கு மாத்திரம் விடை தருக.
- (ii) வைத்தியக் கல்வி நெறிக்கு விண்ணப்பிக்க விரும்பும் மாணவர்கள் பகு டு—1இல் இருந்து ஒரு விணைவயும், பகு டு—2இல் இலிருந்து மூன்று விணக்களேயும் கெரிவு செய்தல் வேண்டும்,
- (iii) ஏணேய மாணவர்கள் பகுதி 2 இலிருந்து ஒரு வினைவுக்குக் குறையாமலும் இரண்டு விளுக்களுக்கு மேற்படாமலும் விடை எழுதல் வேண்டும்.

பிரிவு B I

- 1: (அ) பின்வரும் சேர்வைகளில், தாண்டல் மூலகங்களின் ஒட்சியேற்ற எண் என்ன?
 - (i) Fe₂O₃ (ii) K₂Cr₂O₇ (iii) K₃Fe (CN)₆ (iv) FeSO₄ (v) CrCl₈ குரோமியத்தின் ஒட்சியேற்ற எண்களேக் கருத்திற்கொண்டு, அமில ஊடகத்தில் ஒட்சியேற்றி யாகத் தொழிற்படும்போது, K₂Cr₂O₇இன் சமவலு நிறையைக் கணிக்க.
 - (ஆ) 1:44 கிராம் FeC₂O₄ஐ அமில ஊடகத்தில் **ஒட்**சியேற்**றுவ**தற்குத் தேவையான K₂Cr₂O₇இன் நிறையைக் கணிக்க.
 - (இ) 1 இராம் K₂Cr₂O₁ஐ, அமில ஊடகத்தில் பூரணமாகத் தாழ்த்துவதற்குத் தேவையான FeSO₄இன் நிறையைக் கணிக்க
 - (ஈ, 1 கிராம் K₂Cr₂O₇ஐ, அமில ஊடகத்தில், H₂O₂ இஞல் பூரணமாகத் தாழ்த்தும்பொழுது வெளிவிடப்படும் ஒட்சிச**னி**ன் கன**வளவை** நி; வெ. அ. இல் கணிக்க.
 - (உ) ஒரு அமில நீர்க்கரைசல் Fe⁺⁺ | Fe⁸⁺ என்னும் அயன்களேக் கொண்டுள்ளது. Fe⁺⁺ அயன்களினதும், Fe⁸⁺ அயன்களினதும் செறிவுகளே, K₂Cr₂O₇ ஐப் பயன்படுத்தி துணிவதற்கான கனமான முறையொன்றைத் திட்டமிடுக.
 - (ஊ) K₂Cr₂O₇ இல் இருந்து, நீரற்ற CrCl₃ஐ எவ்வாறு தயாரிப்பீர் என்பதை நிபந்தணேகள் அடங் கிய சமன்பாட்டினுல் தருக. [K=39, Cr=52, O=16, Fe=56, S=32, H=1]
- 2. பின்வரும் பகுதிகளில், பகுதி (A) அல்லது (B) யிற்கும், (C) யிற்கும் விடையளிக்க.
 - (A) ''கைத்தொழிலாக்கத்தின் சிக்கனமான உற்பத்தி, அவ்வுற்பத்தியில் நடைபெறும் இரசாயனத் தாக்கங்களின் அறிவைக் கொண்டு அதிகரிக்கப்படும்.'' இக் கூற்றைப் பின்வரும் காரணிகளே மனதிற்கொண்டு, சோல்வே முறையில் NaHCO3 இன் உற்பத்தி எவ்வாறு சிக்கனமாக்கப்படு கின்றது என விளக்குக.
 - (a) அயன் சமநிலே.
 - (b) வெப்பநிலேயைத் தொழிற்பாடாகக்கொண்டு, வாயுக்களினதும், திண்மெங்களினதும் கரைதிறன்:
 - (c) உப பொருட்களின் உபயோகம்.

- (B) NaOH, தொழிற்துறையில் செய்தவின் தத்துவங்கள் யாவை? போக்கைட்டைத் தூயதாக்கலில் NaOH எவ்வாறு பயன்படுத்தப்படுகிறது?
- (C) (i) தூய போக்சைட்டிலிருந்து, Al ஐ நேரடி மின் தாழ்த்தலாலோ அன்றி, வெப்பத் தாழ்த்தலாலோ பிரித்தெடுக்கமுடியாது. இதற்கான காரணம் என்ன?
 - (ii) பிரித்தெடுப்பின்போது தூயபோக்சைட் எவ்வாறு மின்பகுக்கப்படுகின்றது என்பதையும், அப்படிப்பட்ட மின்பகுப்பைப் பயண்படுத்துவதால் அதிலுள்ள அனுகூலங்களேயும், மின் பகுப்பின்போது எடுக்கவேண்டிய முன்னவதானங்களேயும், கலத்தில் நிகழும் இரசாயனத் தாக்கங்களேயும் தருக.

விளக்கப்படங்கள் வேண்டியதில்வே.]

3. (அ) B என்னும் திண்மத்தை வெப்பமாக்கியபொழுது, பின்வரும் சமன்பாட்டிற்கிணங்க A, C என் னும் இரு வாயுக்களாரப் பிரிகை அடைந்தத

$B \rightleftharpoons A + C$

- (i) இத்தாக்கத்தின் சமநிலேமாறிலி Kpக்கும், தொகுதியின் மொ**த்த அமுக்க**ம் P இற்கு**ம்** இடையிலான தொடர்பைப் பெறுக.
- (ii) தாக்கத்தின் சமநிலே மாறிலிமையத் துணிவதற்கு, ஒரு முறையைக் குறிப்பிடுக:
- (ஆ) P வளிமண்டல அமுக்கத்திலும், 27°C யிலும், A என்னும் ஒரு இலட்சிய வாயுவையும்; B என்னும் ஒரு இன்மத்தையும் சம கிராம் மூலக்கூற்றளவில் கொண்டுள்ள 4·1 இலீற் குடுவை, அதே வெப்பநிலேயில், P வளிமண்டைல அமுக்கத்தில், டீ என்னும் இலட்சிய வாயுவைக் கொண்டுள்ள 4·1 இலீற் குடுவையுடன் இணேக்கப்பட்டபொழுது, தொகுதியின் மொத்த அமுக்கம் 1·65 வளிமண்டலம் ஆனது. இணேக்கப்பட்ட குடுவையானது, 600°K ற்கு சூடாக்கப்பட்ட பொழுது B ஆனது பின்வரும் சமன்பாட்டின் வழி A, C என்பனவாகப் பிரிகை அடைந்தது.

$B \rightleftharpoons A + C$

பிரிகையின்பின் தொகுதியின் மொத்த அமுக்கம் 4·5 வளிமண்டலங்கள் ஆயின், மேல்வருவனவற்றைக் கணிக்க:

- i) 300°K இல் குடுமையிலுள்ள கூறுகளின் கிராம்மூல்கள்:
- (ii) 300°K இல் A பின் பகுதி அமுக்கம்.
- (ili) P இன் பெறுமானம்.
- (iv) 600°K இல். குடுவையிலுள்ள கூறுகளின் கிராம்மூல்கள்:
- (v) 600°K இல். குடுவையிலுள்ள கூறுகளின் பகுதி அமுக்கங்கள்:
- (vi) 600°K இல், சமநிலேயின் ஒருமை (Kp)
- (vii) 8·2 இலீ. கொள்ளளவுடைய ஒரு கலணில், மேல் எடுக்கப்பட்ட அதே கிராம் மூலக்கூற்றளவு В எடுக்கப்பட்டு, 600°K வரை வெப்பமாக்கப்பட்டால்,
 - (i) மொத்த அமுக்கம்
 - (ii) B இன் கூட்டப்பிரிவளவு என்பவற்றைக் கணிக்க.
 - (iii) தொகுதியானது சமநிலேயில் இருக்கும்பொழுது. Aயின் பகுதி அமுக்கம் அதிகரிக்கப்படின் (a) சமநிலேமாறிலி (b) சமநிலே என்பவற்றிற்கு யாது நிகழும்?

(அ) S என்னும் ஒரு சேர்வை, செறிந்த H₂SO₄ வுடன் வெப்பமேற்றப்பட்டபொழுது உண்டான வாயு, நீரில் கரைந்து செங்கபிலநிறக் கரைசலேக் கொடுத்தது. இக்கரைசலுக்கு AgNO₈ நீர்க் கரைசல் சேர்க்கப்பட்டபோது. தோன்றிய மஞ்சள் 'வீழ்படிவு, செறிந்த அமோனியாவில் கரையவில்ஃ..

பரிசோதண

நோக்கல்

(i) ஐதான HCl சேர்த்து, H₂S வாயு செலுத்தப் பட்டது. வீழ்படிவு இல்லே.

(ii) மேல் வூஃளவுக்கு, H₂S அகற்றப்படாது மிகை NH₄OH சேர்க்கப்பட்டது. கரியநிற **வீழ்படிவு** தோன்**றியது,**

(iii) செறி, HNO₃ சேர்த்து, KSCN சேர்க்கப் பட்டது. சிவப்பு நிறம் தோன்றவில்லே

(iv) அசற்றிக்கமிலம் சேர்த்து, KCl நீர்க்கரைசல், NaNO₂ நீ**ர்க்கரைசல்** என்பன சேர்க்கப் 'பட்டன. பிரகாசமான மஞ்சளநிற வீழ்படி**வு** கோன்றியது:

காரணங்காட்டி, S ஐ அறிந்து இந் நோக்கல்களுடன் சம்பந்தப்பட்ட தாக்கங்களேத் தருக.

(ஆ) 2×10^{-18} மூல் Cu^{++} 'அயன்களேயும், Mn^{++} அயண்களேயும் $0.1\,\mathrm{M}$ $1\,\mathrm{M}$ $2\,\mathrm{M}$ ற்றர் HCl கரைசல் கொண்டுள்ளது. இக்கரைசல் $\mathrm{H}_2\mathrm{S}$ ஆல் நிரம்பலாக்கும்பொழுது இவ்வயன்கள் சல்பைட்டுக் களாக வீழ்படிவாகுமா எனக் கணிக்க.

 H_2S இன் அயஞக்க மொறிலிகள் $K_1 = 1.0 \times 10-7$ $K_2 = 1.2 \times 10-15$

$$K_{S,P}$$
, $MnS = 1.4 \times 10^{-15}$ $K_{S,P}$. $CuS = 8.5 \times 10 + 4.6$

 H_2S இன் கரைதிறன் = $0\cdot 10$ மூல் இலீ -1

B = H

- 5. C₄H₁₁N ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய A, B என்னும் இரு சமபகுதிய சேர்வைகளே, அமில மாக்கப்பட்ட NaNO 2 கரைசலுடன் தாக்கமுறச்செய்தபொழுது C, D என்னும் விளவுகள் பெறப் பட்டன. C ஆனது ஒரு மூல அமிலம் E [C₄H₈O₂] ஆக ஒட்சியேற்றப்படலாம்.
 - (அ) C இற்குச் சாத்தியமான இரு கட்டமைப்புக்களேத் தருக:
 - (ஆ) C ஆனது, ஐதரசனகற்றப்பட்டு, உண்டான் சேர்வையை, கிளமென்சனின் தாழ்த்தலுக்கு உட் படுத்தும்போழுது சமபியூற்றேன் பெறப்பட்டது.
 - 🤲 கிளமென்சனின் தாழ்த்தலில் பயன்படுத்தப்படும் சோதீனப் பொருட்கள் எவை?
 - (ii) C, E என்பவற்றின் கட்டமைப்புக்களேத் தருக.
 - (இ) Dஐ ஒட்சுயேற்றப் பெறப்படும் சேர்வை (F), **அயடோபோ**ம் தாக்கத்திற்கு நேர் <mark>விடை</mark> யளித்தது.
 - (i) D, F என்பது என்ன?
 - (ii) D ஐ நீரகற்றலுக்கு உட்படுத்தும்பொழுது, எத்தனே சமபகுதிக விளேவுகள் உண்டாகும்? அவை யாவை?
 - (ஈ) E யின் மூலக்கூற்றுச் சூத்திரத்தை உடைய வேழெரு சேர்வை (G) ஆனது எதயில் அசற்றே அசற்றேற் (H) ஆக மாற்றக்கூடியது.
 - (i) G இன் கட்டமைப்பு என்ன? இம்மாற்றீட்டை நிபந்தனேகளாற் தெரிவிக்க.
 - (ii) ஈ (i) இற்கான பொறிமுறையைத் தருக.

- (உ) (i) H ஆனது எத்தனே நிலேகளில் காணப்படுகின்றது? அவை யாவை?
 - (ii) மேற்கூறிய நிலேகளில் இருப்பதைக் காட்டுவதற்கு, ஒவ்வொரு நிலேக்கும் ஒவ்வொரு பரிசோதனேச் சான்றுகளேத் தருக. [சமன்பாடுகள் வேண்டியதில்லே]
- 6. (அ) பின்வரும் தரவுகளிலிருந்து A, B என்பவற்றின் கட்டமைப்புக்களேத் தருக:
 - (i) A என்னும் சேர்வையை முதலில் புரோமின் நீருடன் தாக்கியபின், அசற்றயில் குளோ ரைட்டுச் சேர்க்கப்பட்டபொழுது, C₈H₈Br₈NO ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய சேர்வை ஒன்று தோன்றியது. ஆனுல் Aஐ முதலில் அசற்றயில் குளோரைட்டுடன் தாக்கிய பின், புரோமின் நீர் சேர்க்கப்பட்டபொழுது, C₈H₈Br NO ஐ மூலக்கூற்றுச் சூத்திரமாக வடைய சேர்வை தோன்றியது:
 - (ii) C₅H₈O₅ என்னும் மூலக்கூற்றுச் சூத்திரத்தை உடைய B என்னும் அமிலத்தை ஒளியியற் கூறுகளாகப் பிரிக்க முடியாது. B ஐ வன்மையாக வெப்பமாக்கியபொழுது, C₄H₈O₈ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய C என்னும் அமிலத்தைக் கொடுத்தது. இதை ஒளி யியற் கூறுகளாகப் பிரிக்கலாம்.
 - (iii) (a) A இல் இருந்து பீணல் ஐதரசீண எவ்வாறு தயாரிப்பீர்?
 - (b) CH3 · CH2 · COOH இவிருந்து எவ்வாறு C ஐத் தொகுப்பீர்?
 - (ஆ) மேல்வருவனவற்றில் ஏதேனும் இரண்டினே விளக்குக.
 - (i) பீ இலை NaOH இல் கரையும். ஆஞல் பென்சைல் அல்கைகோல் கரையோது. [விளைக்குவதற்கு இலத்திரன் வினேஷகளே (பெரிஷ வினேஷகளே)ப் பயன்படுத்துக.]
 - (ii) பிறீடல் கிருப்தரின் தாக்கத்தில்: 1 மூல் CH₃COClக்கு, 1·1க்கும் 1·3க்கும் இடையிலான மூல் AlCl₃ பயன்படுத்தப்படுகின்றது. (பரிவு விளேவுகளேப் பயன்படுத்தல் அவசியம் அற்றது.)

வாசனே ஈரசோனியச் சேர்வைகள் (அருமேற்றிக்) அவ்வவற்றின் கொழுப்பு எதிரிணேகளேக் (அவிபற்றிக் ஈரசோனியச் சேர்வைகள்) காட்டிலும் உறுதி மிக்கவை.

- (iii) அசற்றிக்கமிலம் சுருங்கிய கருநாட்டத் தகவுடைய ஓர் அமிலம். ஆளுல் அசற்றேமைட் ஓர் அதிமென் மூலம்.
- 7: (அ) பின்வரும் சோடிச்சேர்வைகளே, ஒவ்வொரு சோடிக்கும் அதே சோதணப்பொருளே அல்லது அதே சோதணப் பொருள்களே உபயோகித்து எவ்வாறு வேறு பிரித்து அறிவீர்? ஒவ்வொரு சேர்வையிலும் சோதணப்பொருள் | சோதணப்பொருள்களின் தாக்கமென்னை: ஒவ்வொன்றிலும் உமது நோக்கல்களேத் தருக.
 - A (i) P-மெதயில் அனிலீன் ($CH_3 C_6H_4 = NH_2$); (ii) பென்சைல் அமீன் ($C_6H_5 CH_2NH_2$)
 - B (i) P-ஐதரொட்சி தொலுயீன் (HO-C₆H₄·CH₃); (ii) பென்சைல் அல்ககோல் (C₆H₅-CH₂OH)
 - C (i) P—குளோரோ தொலுயீன் (Cl—C₆H₄—CH₃); (ii) பென்சைல் குளோரைட் (C₆H₅—CH₂Cl)
 - D (i) பென்சீன் (C_6H_6);

(ii) எக்சீன் (C₆H₁₂)

E (i) பென்சீன் (C_6H_6);

- (ii) தொலுயீன் ($C_6H_5-CH_3$).
- (ஆ) பின்வரும் சேர்வைகளின் ஒவ்வொரு தொகுப்பிற்கான ஒரு முறையைச் சுருக்கமாகத் தருக.
 - (i) A (i) இலிருந்து, A (ii) இன் தொகுப்பு
 - (ii) B (i) இவிருந்து, D (i) இன் தொகுப்பு
 - (iii) C (i) இவிருந்து, E (ii) இன் தொகுப்பு
 - (iv) B (ii) இனிருந்து, அயடோ பென்சீன்:
- (இ) C (ii), அல்ககோல் (எதனேல்) சேர்ந்த NaOH உடன் புரியும் தாக்கத்தி**ற்கான** பெட் முறையைத் தருக

- 8. A என்பது, C₈H₇O₂ஐ அனுபவச் சூத்திரமாகவுடைய ஒரு நடுநிஃயான சேர்வையாகும்: Aஐ மிகை பான NaOH நீர்க்கரைசலுடன் கொதிக்கச் செய்தபொழுது, பெறப்பட்ட தெளிவான கரைசல் காபனீரொட்சைட்டினுல் நிரம்பலாக்கப்பட்டபொழுது, C₆H₆O என்னும் மூலக்கூற்றுச் சூத்திரத்தை புடைய திரவம் B பெறப்பட்டது. B நடுநிஃயான, FeCl₈ உடன் ஊதாநிறத்தையும், புரோமின் நீருடன் வெண்ணிற வீழ்படிவையும் கொடுத்தது.
 - (அ) B என்னும் சேர்வையின் கட்டமைப்பைத் தருக.
 - (ஆ) Bஐ அகற்றியபின், விளேந்த நீர்க்கரைசலே அமிலமாக்கியபொழுது $C_2H_3O_2$ என்னும் அனுபவ சூத்திரத்தை உடைய சேர்வை C பெறப்பட்டது. Cஐ அமிலத்தின் முன்னிலேயில், மெதனே லுடன் தாக்கியபொழுது $C_3H_5O_2$ ஐ அனுபவசூத்திரமாகவுடைய நடுநிலேயான சேர்வை D பெறப்பட்டது. Dயின் ஆவியடர்த்தி 73. Cஐ வெப்பமாக்கியபொழுது, நீர்மூலக்கூறை இழந்து, $C_4H_4O_3$ ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய நடுநிலேயான சேர்வை E பெறப்பட்டது.
 - (i) C, E, D என்பவற்றின் கட்டமைப்புச் சூத்திரங்களேத் தருக
 - (ii) Aயின் கட்டமைப்பைத் தருக:
 - (இ) (i) Bஇல் இருந்து, சலுசாலிக்கமிலத்தை எவ்வாறு தொகுப்பீர்?
 - (ii) எதனேலிலிருந்து Cஐ எவ்வாறு தொகுப்பீர்?
 - (iii) Bயிலிருந்து எவ்வாறு (a) P-நைத்ரோ பீணேல் (b) பிக்கிரிக்கமிலம் என்பவற்றைத் தயாரிப்பீர்?
 - (ஈ) (i) Bஐயும், Cஐயும் கொண்ட கலவையிலிருந்து, இரு கூறுகளேயும் எவ்வாறு பிரித்தெடுப்பீர்?
- 9. C₉H₁₀ ஐ மூலக்கூ**ற்றுச்** சூத்திரமாகவுடைய A என்னும் அருமேற்றிக்குச் சேர்வையை ஒசோன் பகுத்தபொழுது, B, C என்னும் இரு விளேவுகள் பெறப்பட்டன. இவற்றில் B பீலிங்கின் கரைசஃலத் தாழ்த்தவில்ஃ; C தாழ்த்தியது. Bஐ கார KMnO₄ உடன் கொதிக்கச்செய்தபொழுது, ஒரு மூல அமிலம் D பெறப்பட்டது.
 - (அ) B, C, A என்பவற்றின் கட்டமைப்புச் சூத்திரங்களே உய்த்தறிக:
 - (ஆ) Aயின் ஓசோன் பகுப்பிளுல் பெறப்பட்ட விளேவுக்கரைசலுக்கு, ஐதான வன்மூலம் ஒன்றைச் சேர்த்து வெப்பமாக்கும்பொழுது, உண்டாகக்கூடிய 4 விளேவுகளின் கட்டமைப்புக்களே த் தருக.
 - (இ) (i) Bஇன் தாய் ஐதரோகாபனி**விருந்து**, B ஐத் தொகுக்க ஒரு முறையைத் தருக
 - (ii) D ஜ் எவ்வாறு B ஆக மோற்றுவீர்?
 - (ஈ) தரப்பட்ட சேர்வை ஒன்று B, C, D என்பவற்றில் ஏதோ ஒன்று என நம்பப்படுகின்றது: இச்சேர்வையை நீர் இனங்காணுவதற்குத் தேவையான மிகக் குறைந்த எண்ணிக்கையான இரசாயனச் சோதணேகளேத் தருக.
 - (உ) (a) A, பின்வருவனவற்றுடன் என்ன பொறிமுறைப்படி தாக்கத்தில் ஈடுபடும்?
 - (i) 500°C யில் குளோரின்
 - (ii) குளோரின் நீர் அல்லது Br₂ | CCl₄
 - (iii) Fe | Cla
 - (b) (i), (ii), (iii) என்பவற்றில் விளேவாக்கப்படும் சேர்வைகளின் கட்டமைப்புக்களேத் தருக:

க. பொ. த. (உயர்தரம்) பயிற்சிப் பரீட்சை

இரசாயனம் II

பகு இ A—அமைப்புக் கட்டுரை

விடைகள்

1. (3) A.
$$1 S^2$$
, $2 S^2$, $2 p^6$, $3 S^2$, $3 p^4$ B. $1 S^2$, $2 S^2$, $2 p^8$ C. $1 S^2$, $2 S^2$, $2 p^6$, $3 S^2$, $3 p^6$, $3 d^{10}$, $4 S^1$

$$(-25) (i) X: H \xrightarrow{x} \stackrel{\stackrel{\cdot}{A} \xrightarrow{x}} H \qquad \qquad H \xrightarrow{x} \stackrel{\stackrel{\cdot}{B} \xrightarrow{x}} H$$

- (ii) A இன் ஒட்சி அமிலத்தை நீருக்குள் சேர்க்கும்பொழுது, பெருமளவு வெப்பம் வெளிவிடப் படும்.
- (iii) H₂ AO₄ இல், Aஇல் இலத்திரன் அடர்த்திக் குறைவு காணப்படும். Aஇல் d வெற் ரெழுக்குகள் காணப்படுவதால், இலகுவாக நீரேற்றப்பட்டுப் பெருமளவு வெப்பம் வெளி விடப்படும். HBO₈ இல், B இல் இலத்திரன் அடர்த்திக் குறைவுள்ள பொழுதிலும், வெற் ரெழுக்கு இல்ஃயாதலால் நீரேற்றம் நிகழாது.

(iv)
$$O = A$$
 $O = A$
 $O = A$

- (ஈ) (i) K+இல், 3 S², 3 p⁶ என்னும் உறுதியான அமைப்புக்காணப்படுவதுடன், பூரண **இலத்**திர**ன்** திரைவினேவு காணப்படுகிறது. எனவே இரண்டா**ம் அய**ஞக்க சக்**தி** கூடிய**து. ஆகவே** K++ஐ உருவாக்காது. ஆஞல் Cu+ — 3 S² 3 p⁶ 3 d ¹⁰ உறுதியற்ற அமைப்பு: பாதுகாப் பற்ற. இலத்திரன் திரைவினேவு: எனவே மேலும் ஒரு இலத்திரண் இலகுவாக இழந்து Cu++ஐக் கொடுக்கும்.
 - (ii) KCl அயன் பிணேப்பு, முரணுன அயன்களுக்கிடையில் வலிய மின்கவர்ச்சி **வி**சைக**ள்** பளிங்கு முற்றிலும் பரந்திருப்பதால், பல மூலக்கூறுகள் இணந்து இராட்சத மூலக்கூறுகளே உரு காக்கும். ஆகவே உருகுநிலே கூடிய பளிங்குத் திண்மம்.

CCl₄ பங்கீட்டுப் பிணேப்பு சிறிய மூலக்கூறுகள். மூலக்கூற்றுக் கவர்ச்சி விசைகள் வலிமை குறைந்தவை. [அயன் கவர்ச்சிவிசைகள் இல்லே] எனவே CCl₄ எளிதில் ஆவியாகும் திரவம்.

- 2. (அ) (i) மக்னிசைற் MgCO₈
 - (ii) கடல்நீர் NaCl
 - (iii) விமோ**ை**தற் 2Fe₂O₃ : 3H₂O
 - (iv) நாகமயக்கி ZnS
 - (V) பைரோலாசைட் MnO₂
 - (ஆ) (i) MgCl₂ இன் உருகிய கரைசலே C அனேட்டாகவும், Fe கதோட்டாகவும் பயன்படுத்தி மின்பகுப்பதால் பெறப்படும்.
 - (ii) நீரற்ற NaCl இன் உருகிய கரைசலே அல்லது நீர் அற்ற NaOH இன் உருகிய கரைசலே மின் பகுத்துப் பெறப்படும்.
 - (iii) Fe₂O₃ஐ காபளுல் 1500°C இல் வெப்பத்தாழ்த்தலுக்கு உட்படுத்தித் தயாரிக்கப்படும்.

1380°C

(iv) ZnS ஐ, வ**ளியுடன்** வ**று**த்து, பெறப்படும் ஒட்சைட்டை ஹேடிபில், செஞ்சூடாவ காபனுடன் வெப்பத் தாழ்த்தலுக்கு உட்படுத்திப் பெறப்படும்.

$$\left\{ \begin{array}{l} 2 \operatorname{ZnS} + 3O_2 \longrightarrow 2\operatorname{ZnO} + 2\operatorname{SO}_2 \\ \operatorname{ZnO} + \operatorname{C} \longrightarrow \operatorname{Zn} + \operatorname{CO} \end{array} \right\}$$

(V) M_1O_2 ஐ, காபனுடன் தாழ்த்துவதன்மூலம் தயாரிக்கப்படும்

$$MnO_2 + 2C \longrightarrow Mn + 2CO$$
.

- (இ) (i) Mg களிர் நீருடன் மெதுவாகத் தாக்கமுறும். நீரின் வெப்பநிஃ கூட, தாக்கவேகம் அதிகரிக்கும்: சூடாக்கப்பட்ட Mg, பிரகாசமான வெளிச்சத்துடன் நீராவியில் எரிந்து, ஒட்சைட்டையும் ஐதரசணயும் கொடுக்கும்.
 - (ii) Na குளிர் நீனர வீறுடன் தாக்கி, எரிந்து ஐதரொட்சைட்டையும், ஐதரசணேயும் கொடுக்கும்.
 - (iii) Fe குளிர் நீருடன் தாக்கமில்லே, செஞ்சூடான இரும்பு, நீராவியைத் தாக்கி, Fe₈O₄ஐயும் ஐதரசணேயும் கொடுக்கும்:

- (iv) Zn குளிர் நீருடன் தாக்கமில்லே. செஞ்சூடான Zn, நீராவியுடன், ஒட்சைட்டையும், ஐ தரசனேயும் கொடுக்கும்.
- (v) செஞ்சூடான Mn, கொதிநீராவியுடன் தாக்கமுற்று, ஒட்சைட்டையும், ஐதரசனேயும் கொடுக்கும்.
- (ஈ) (i) Mg ஐ அறை வெப்பநிஃயில் வளியில் வைக்கும்பொழுது மங்கலாகும். காரணம் பாது காப்பான ஒரு ஒட்சைட்டுப் படலத்தை உருவாக்கும். சூடாக்கும்பொழுது, வளியில் பிரகாசத்துடன் எரிந்து ஒட்சைட்டையும், சிறிதளவு நைத்திரயீட்டையும் உருவாக்கி, வெப்**ப**த்தையும் கக்கும்.
 - (ii) Na அறைவெப்பநிலேயில் வளியுடன் உக்கிரமாக எரிந்து ஒட்சைட்டை உருவாக்கும். பின் நீரை உறிஞ்சி ஐதரொட்சைட்டாகும். இது CO₂ஐத் தாக்கி, காபனேற்றைக் கொடுக் கும்?
 - (iii) வளியில் Fe அரிப்புக்குட்படுத்தப்பட்டு. கபிலநிறமான Fe₂O பொருக்குகள் தோன்றும்:
 - (iv) Zn வளியில் பாதுகாப்பான ஒரு ஓட்சைட்டுப் படலத்தை உருவாக்கும். சூடாக்கப்படும் பொழுது எரிந்து ஒட்சைட்டைக் கொடுக்கும்.
 - (v) Fe இல் மாற்றமெதுவும் நிகழாது. [Fe அரிப்புக்குட்படமாட்டாது.]
 Mg, இரும்பிலும் இலகுவாக 2 இலத்திரண்களே இழந்து Mg++ அயின உருவாக்கும் எனவே இங்கு Fe கதோட்டாகத் தொழிற்படுவதால், Fe++ அயன் உண்டாதல் தடுக்கப் படும். ஆகவே Feக்கு கதோட்டுப்பாதுகாப்பு அளிக்கப்படும்.
- (உ) (i) NaCl நீரேற்றப்பட்டு, முற்ருன அயன்நிலேயில் காணப்படும், நீர்ப்பகுப்படையாது. விளேவுக்கரைசல் நடுநிலேயானது.

NaCl (
$$\sharp$$
ir) \sim Na(\sharp ir) + Cl(\sharp ir)

FeCl நீர்ப்பகுப்பதைடயும்: நீர்ப்பகுப்பு மீளும். விளேவுக்கரைசல் அமிலமாக இருக்கும்.

SiCl₄ நீர்ப்பகுப்படையும். மீளாது. **விளேவுக்க**ரைச**ல்** அமிலமாக இருக்கும்,

$$SiCl_4 + 3H_2O \longrightarrow H_2SiO_3 + 4HCl$$

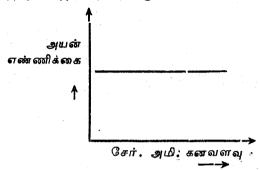
(ii) NaCl:

சூடாக்கும்பொழுது நீர்ப்பகுப்படையாது: நீர் மூலக்கூறுகளே இழந்து நீரற்றதாகும் உயர்வெப்பநிஃயில் உருகும்:

FeCl_a : சூடாக்கும்பொழுது, நீர்ப்பகு<mark>ப்படைந்து, Fe_g O₃ ஐயும் HCl ஐயும் கொடுக்கும்:</mark> நீரற்ற குளோரைட் உருவாகாது;

$$2 \operatorname{FeCl}_8 + 3 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_2 O_8 + 6 \operatorname{HCl}$$

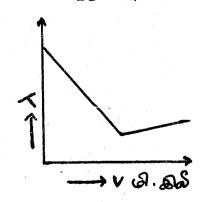
ZnCl₂ / சூடாக்கும்பொழுது நீர்ப்பகுப்படைந்து, மூல ஒட்சி குளோரைட்டை உருவாக்கும். நீரற்ற குளோ**ரைட்** உருவாகாது.

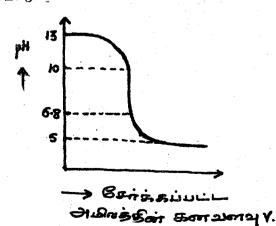

(iii) FeCl₃ + 3 NaOH → Fe (OH)₈ ↓ + 3 NaCl

$$2 \text{ Fe } (OH)_3 \xrightarrow{\triangle H} \text{ Fe}_2O_3 + 3H_2O$$

$$\text{Fe}_2O_3 + 3C + 3Cl_2 \longrightarrow 2 \text{ FeCl}_3 + 3CO$$

- (i) MgO கார ஒட்சைட்டாதலால், NaOH ஐத் தாக்காது: ZnO ஈரியல்புள்ளதாகையால் காரத்தில் கரைந்து, சிங்கேற்றையும், நீரையும் கொடுக்கும்.
- (ii) Fe, செறிந்த HNO_3 ஐத் தாச்காது. காரணம் : HnO_3 ஒரு ஒட்சியேற்றும் அமிலமாகை யால். இரும்பைச் சுற்றி உண்டாகும் ஒட்சைட்டுப் படலம் (Fe $_2\mathrm{O}_3$) HNO_3 இல் கரையாது.
- (iii) Mn இன் (MnO₂) தாதை அரைத்து மாவாக்கப்பட்டு KOH உடனும் வளி உடனும் உருக்கப்படும். பின்னர் சிறிதளவு நீர் சேர்த்துப் பிரித்தெடுத்து வடிக்கும்பொழுது தாக்க முருத MnO₂ அகற்றப்பட்டுப் பச்சை நிறத் திரவம் (மங்கனேற்று) பெறப்படும்: இதற்கு CO₂ வாயு அல்லது ஐ H₂SO₄ சேர்த்து அமிலமாக்கக் கரைசல் ஊதா நிறம் ஆகும்: இதை வடித்து வடிதிரவத்தை ஆவியோக்க KMnO₄ உருவாகும்.


3. (s) (i)



- (iii) உறைநிலே இறக்கம் $\triangle T = K_f : C = 1 \cdot 86 \times 0 \cdot 05 \times 2 = 0 \cdot 186 ^{\circ} C$. \therefore உறைநிலே = $0 - 0 \cdot 186 = -0 \cdot 186 ^{\circ} C$
- (ஆ) (i) Aயில் வெளிவிடப்பட்ட வெப்பம், Bமிலும் கூடியது. வீஃோவுக்கரைசெல்களின் pH, A இல் 7. B இல் 7இலும் அதிகம்.
 - (ii) B இல் வெளிவிடப்பட்ட நடுநிலேயாக்க வெப்பத்தில் ஒரு பகுதி, மென்னமிலத்தின் அயு குகத்திற்குப் பயன்படுத்தப்படுவதால் வெளினிடப்படும் வெப்பம் குறையும்.

B இல் வீளேவாகும் உப்பு நீர்ப் பகுப்படைவதால் வன்காரம் கரைசலில் காணப்படும். எனவே pH 7 இலும் அதிகமாகக் காணப்படும்:

(**2**) (i)

(ii) பினேல் தலீன்

இந்கு pH மாற்றம் நடைபெறும் வீச்சம் 7:8—10 .. காரக்கரையில் pH வீச்சமுள்ள (7-8-10) இருப்பதால் பயன்படுத்தப்படும்:

- (#) (i) $pH = pKa + \mu L \left[\frac{2 \dot{U} U}{9 \dot{W} \otimes \dot{W}} \right] = 5 + \mu L \frac{0.05}{0.05} = 5$.

- (iii) 5 (iv) 5 (v) 5 (vi) > 7.
- 4. (4) (i) C4H8Cl2
 - (ii) (A) $CH_3-CH-CH_3$ (B) $CH_3-C=C-CH_3$ (C) $CH_3-CH=CH_3$ (D) $CH_3-CH=CH_3$
- (3) (i) CH₈-CH₂-CH-CH₂Cl, CH₈: CH₂-CH₂-CHCl₂; CH₃-CH₂-CCl₂-CH₃
 - (ii) (E) CH₈-CH₂-C=CH
 - iii) CH₃-CH₂-C≡CH + CuCl NH₃ CH₃-CH₂-C≡C-Cu ↓ + HCl.
- (இ) (i) (F) CH₃-CH₂-C=O எதயில், மெதயில் கீற்ளேன் அல்லது பியூற்ளேன் 2; CH₄
 - (ii) HgO, ஐதான H₂SO₄ / 65-70°C, Hg⁺⁺ ஊக்கி, நீர்ப்பகுப்பு.
 - (iii) CH₂-CH₂-CH₂-CHO-பியூற்றனல்:

2 **மெ**தயில் புறப்பனல்

- (#) (i) De.i. Fe.i.
 - ஐதான OH

 ————— CH₃ CH (OH) CH₂ CHO (ii) 2 CH₂CHO
 - (iii) G முணவாக்கப்பட்ட ஒளியைத் திருப்பும்:

(iv)
$$CH_8$$
 $C=C$ CHO

க. பொ. த. (உயர்தரம்) பயிற்சிப் பரீட்சை

இரசாயனம் II

B கட்டுரை

விடைகள்

அல்லது

நிறை = $\frac{49}{48} \times 1.44 = 1.47$ இராம்.

 Cr_2O_7 + 14H+ + 2FeC₂O₄ -----> 2Cr⁸⁺ + 7H₂O + 2Fe⁸⁺ + 4CO₂ சமன்பாட்டின் வழி, 2 மூல் $\operatorname{FeC}_2\mathrm{O}_4$ ஐ, அமில ஊடகத்தில், முற்றுக ஒட்சியேற்ற, 1மூல் $\mathrm{K}_2\mathrm{Cr}_2\mathrm{O}_7$ தேவை. அஃது ; 2×144 கிராம் $\operatorname{FeC}_2\mathrm{O}_4$ ஐ, அமில ஊடகத்தில் முற்றுக ஒட்சியேற்ற, $294\ \mathrm{கிராம}\ \mathrm{K}_2\mathrm{Cr}_2\mathrm{O}_7\ \mathrm{G}_5$ வை.

 $:. 1\cdot 44$ கிராம் ${
m FeC_2O_4}$ ஐ. முற்றுகஒட்சியேற்ற**த் தேவையான** ${
m K_2Cr_2O_7}$ இன் நிறை $= rac{294}{2 imes 144} imes rac{1\cdot 44}{2 imes 144} imes$

= 1.47 கிராம்.

(இ) 1 மூல் Fe++, Fe⁸⁺ ஆக ஒட்சியேற்றப்படும்பொழுது. ஒட்சிபேற்ற எண் மொற்றம் 1 ∴ FeSO₄ இன் சமவலு நிறை = 152/1 = 152

1 கி. சமவலை K₂Cr₂O₇ஐ, முற்றுகத் தாழ்த்துவதற்கு, 1 கி. சமவலை FeSO₄ தேவை. 49 கிராம் அமில K₂Cr₂O₇ஐ, முற்றுகத் தாழ்த்துவதற்கு 152 கிராம் FeSO₄ தேவை.

். 1 கிராம் அமில $K_2Cr_2O_7$ ஐ. முற்ளுகத் தாழ்த்துவதற்குத் தேவையான $FeSO_4$ இன் நிறை $=\frac{152}{49}=3\cdot 10$ கிராம்.

அல்லது

 $\text{Cr}_2\text{O}_7^{--} + 14\text{H}^+ + 6\text{ Fe}^{++} \longrightarrow 2\text{ Cr}^{3+} + 7\text{H}_2\text{O} + 6\text{ Fe}^{3+}$ சமன்பாட்டின் வழி.

1 மூல் $m K_2Cr_2O_7$ ஐ, அமில ஊடகத்தில், முற்றுகத் தாழ்த்த, 6மூல் $m FeSO_4$ தேவை. அஃது 294 கிராம் $m K_2Cr_2O_7$ ஐ, அமில ஊடகத்தில் முற்றுகத் தாழ்த்த, m 6 imes 152 கிராம் $m FeSO_4$ தேவை.

:: 1 கிராம் $K_2Cr_2O_7$ ஐ, முற்ருகத் தாழ்த்துவதற்குத் தேவையான $FeSO_4$ இன் நிறை = $\frac{6 imes 152}{294} = 3 \cdot 10$ கிராம்

1 கி. சமவலு $K_2C_{12}O_7$ ஐ, 1 கி. சமவலு H_2O_2 முற்ருகத் தாழ்த்தும்

். 49 கிராம் அமில K₂Cr₂O₇ஐ, 17 கிராம் H₂O₂ முற்றுகத் தாழ்த்தும்.

 \therefore 1 கிராம் அமில $\mathbf{K_2Cr_2O_7}$ ஐத் தாழ்த்துவதற்குத் தேவையான $\mathbf{H_2O_2}$ இன் திறை $= \frac{17}{49}$ கிராம்.

1 மூல் $\mathrm{H}_2\mathrm{O}_2$, ஒட்சியேற்றப்படும்பொழுது, 1 மூல் ஒட்சிசன் வெளிவிடப்படும் $\mathfrak g$ அ-து, 34 கிராம் $\mathrm{H}_2\mathrm{O}_2$ ஒட்சியேற்றப்படும்பொழுது, 1 மூல் ஒட்சிசன் வெளிவிடப்படும்.

்.
$$\frac{17}{49}$$
 கிராம் $\mathrm{H}_2\mathrm{O}_2$, ஓட்சியேற்றப்படும்பொழுது வெளிவிடப்படும் ஒட்சிசன்

$$=\frac{1}{34} \times \frac{17}{49}$$
 whi
 $=\frac{1}{98}$ whi.

1 மூல் ஒட்சிசன், நி. வெ. அ. இல், 22 4 இலீ. ஐ அடைக்கும்:

். ி கிராம் K₂Cr₂O₇, H₂O₂ இஞல் பூரணமாகத் தாழ்த்தப்படும்பொழு**து.**

= 0·22857 @at:

= 228:57 மி. வீற்

அல்லது

$$Cr_2O_7^{--} + 8H^+ + 3H_2O_2 \longrightarrow 2Cr^{3+} + 7H_2O + 3O_3$$

1 மூல் K₂Cr₂O₇ , அமில ஊடகத்தில், H₂O₂ இஞல் முற்றுகத் தாழ்த்தப்படும்பொழுது 3 மூல் **ஒட்**சிசன் வெளி**விடப்**படும்.

அ—து, 294 கிராம் K₂Cr₂O₇, அமில ஊடகத்தில் முற்ருக H₂O₂ இரைல் தாழ்த்<mark>தப்படும்</mark> பொழுது, வெளிவிடப்படும் ஒட்சிசன் = 3 மூல்:

். 1 கிராம் K 2Cr 2O 7 அமில ஊடகத்தில், H2O 2 இஞல் முற்றுகத் தாழ்த்தப்படும்பொழுது வெளிவிடப்படும் ஒட்சிசன் 🖶 💰

1 மூல் நட்சிசன், நி.வெ.அ. இல் 22.4 இவீ. ஐ அடைக்கும்.

$$rac{3}{294}$$
 மூல் O_2 , நி. ெவ. அ. இல் அடைக்கும் கணவளவு $=rac{3}{294} imes ^{22\cdot 4}$
 $=0\cdot 22857$ இலீ.
 $=228\cdot 57$ மி. லீற்.

(உ) தெரிந்த கனவளவு (25 மி. **இலி.**) க**ரைசி**ல எடுத்து, நியம் K₂Cr₂O₇ உடன் வெலுப்பார்த்து (இரு பீணேல் அமீணேக் காட்டியாகப் பாவித்து) கரைசலிலுள்ள Fe⁺⁺ அயன்களின் செறிவைக் கணிக்கலாம். [N நேர், K₂Cr₂O₇ இன் V மி. லீ. தேவைப்பட்டது என்க.]

பின்னர், வேறு 25 மி. லீ. கரைசஸ் எடுத்து. $SnCl_2$ கரைசஸ் மிகையாகச் சேர்ப்பதன் மூலம் கரைசலிலுள்ள Fe^{3+} அயண்கள் முழுவதையும் Fe^{++} அயண்களாகத் தாழ்த்தலாம். பின், கரைசலில் மிகையாக இருக்கும் Sn^{++} அயன்களே $HgCl_2$ சேர்த்து அகற்றியபின், விளேவுக் கரைசஸ் நியம $K_2Cr_2O_7$ உடன் வலுப்பார்ப்பதன் மூலம் (கரைசலில் உள்ளதுடன், Fe^{8+} அயண்களேத் தாழ்த்துவதால் உண்டாவதுமான) முழு Fe^{++} அயண்களின் செறிவைக் கணிக்கலாம். [N நேர், $K_2Cr_2O_7$ இல் V_0 மி. லீ. தேவைப்பட்டது என்க]

$$\therefore$$
 கரைசலில் உள்ள Fe^{++} அயன்களின் செறிவு $=\frac{N\times V}{1000} imes \frac{1000}{25}$ $=\frac{NV}{25}$ கி. சமவலு இலீ $^{-1}$

். தாழ்த்துவதால் பெறப்பட்ட
$$Fe^{++}$$
 அயன்செறிவு $=$ கரைசலிலுள்ள Fe^{8+} அயன்களின் Fe^{8+} அயன்களின்

வீடை:

2. (A) NaHCO₈ பெரும்படி ஆக்கல் /

ஆவியாக்கல் மூலம் செறிவாக்கி, சுத்திகரிக்கப்பட்ட கடல்நீர், குளிர்த்தொட்டிகளில், NH_3 ஆல் நிரம்பலாக்கப்பட்டு, $2\frac{1}{2}$ வளிமண்ட அமுக்கத்தில் மிகையான CO_2 வாயு, அரணின் அடித்தளத்திலிருந்து மேல்நோக்கிச் செலுத்தப்பட்டு, வெப்பநில 23° — 30° C வரை வைக்கப்படும்பொழுது, பின்வரும் தாக்கங்கள் நிகழ்வதால் $NaHCO_3$ விளேவாக்கப்படும்l

$$CO_2 + H_1O + NH_2 \Longrightarrow NH_4HCO_8 \longrightarrow (1)$$
 $NH_4HCO_3 + NaCl \Longrightarrow NaHCO_8 \downarrow + NH_4Cl \longrightarrow (2)$

தத்துவங்கள் :

1. (i) அயன்சமநி*வ*ே:

NaHCO3 இன் விளேவை உச்சமாக்குவதற்கு, கரைசலில் HCO3 அயன்களின் செறிவு அதிகரிக்கப்படல் வேண்டும். ஆஞல் CO2 வாயு நீரில் கரைவதால் உருவாகும் H2CO3 இரு மென்னமிலமாதலால், இதில் இருந்து பெறப்படும் HCO3 அயன்களின் செறிவு குறைவாகும்:

ஆஞல் கடல்நீர் முன்னரே அமோனியாவால் நிரம்பலாக்கப்பட்டிருப்பதால்,

NH₃+H+ ———> NH½ என்னும் **தாக்கம் நிக**ழ்ந்து, NH₃வால், சமநிஃயிலுள்ள H+ அயன்கள் அகற்றப்படுவதால், H₂CO₃ இன் அயஞ**க்கம் கூட்டப்பட்டு HCO₃ அய**ன்களின் செறிவு கூட்டப்படும். எனவே NaHCO₃இன் ஆக்கம் அதிகரிக்கும்.

2. CO₂, கடல்நீரைச் சந்தித்தபின், சமநிலேயில் இருக்கும் NH₄⁺, HCO₃⁻, Na+, Cl⁻ ஆகிய அயன்களின் குறைந்த வெப்பநிலேயில் கரைதிறன் குறைந்த NaHCO₃ வீழ்படிவாக்கப்படும்;

NH₄+ + HCO₃ + Na+ + Cl - NaHCO₃ ↓ + NH₄+ + Cl + △H Na+ , HCO₃ உடன் இணேயும் தாக்கம். வெப்பத்தை வெளிவிடுவதால் NaHCO₃ இன் வீழ்படிவாக்கத்தை உச்சமாக்குவதற்கு வெப்பநில் குறைக்கப்படல் வேண்டும்:

- 3. கடல்நீர், NH₃ ஆல் முன்னரே நிரம்பலாக்கப்படுவதாலும், மிகையான CO₂ பயன்படுத்தப்படுவ தாலும் இவற்றி**ன்** செறிவுகள் உயர்ந்து காணப்படும். எனவே தாக்கம் (i) இல், சம**நிலே வலது** புறமாகத் தவ்ளப்பட்டு NaHCO₃ இன் வீழ்படிவாக்கம் அதிகரிக்கப்படும்.
 - (ii) வாயுக்களினதும், திண்மங்களினதும் கரைதிறனும், வெப்பநிலேயும்?
 NH₃, CO₂ என்பன நீரில் கரையும்பொழுது, வெப்பம் வெளிவிடப்படும், எனவே நீரில்
 இவை கரையும் திறவேக் கூட்டுவதற்கு, வெப்பநிலே குறைக்கப்படல் வேண்டும். மேலும்,

இங்கு நடைபெறும் தாக்கங்கள் யாவும் வெப்பத்தை வெளிவிடுவதால்: NaHCO₃ இன் வீழ்படிவாக்கம் குறைக்கப்படும். எனவே NaHCO₃ இன் ஆக்கத்தைக் கூட்ட வெப்பநிலே கட்டுப்படுத்தப்படல் வேண்டும்.

வேப்பு நிலேயைக் கட்டுப்படுத்தும் முறை:

NH₃ நீரில் கரைவதால் பெருமளவு வெப்பம் வெளிவிடப்படும். ஆனுல் இங்கு கடல் நீரானது முன்னரே குளிர்க்தொட்டிகளில் NH₃ஆல் நிரம்பலாக்கப்படும். இதனுல் NH₃இன் கரைதிறனும் கட்டப்படும். வெளிவிடப்படும் வெப்பமும், CO₂ ஐச் சந்திக்க முன்னரே அகற்றப்படும்?

CO₂ நீரில் கரையும்பொழுது வெளிவிடப்படும் வெப்பத்தையும் NH_4 +, HCO_3 இணேயும்பொழுது வெளிவிடப்படும் வெப்பத்தையும் அகற்றுவதற்குத் தாக்கத் தொட்டிகள் குளிருட்டப்படும். மேலும் கிகையான CO_2 அமுக்கத்தில் அரணின் அடித்தளத்தினூடாக, கீழிருந்து மேல்நோக்கிச் செலுத்தப் படுவதால் இதன் கரைதிறன் கூட்டப்படும்.

தாக்கங்கள், யாவும் வெப்பத்தை வெளிவிட்டபொழுதிலும், வெப்பநிலே கட்டுப்படுத்தப்பட்டு 23°C இல் வைப்பதால் வினேவாகும் NaH CO3 இல் ஆக்கம் அதிகரிக்கப்படும்.

உப பொருட்களின் உபயோகம் :

இவ்வுற்பத்தியின் பக்கவிளேவு NH₄Cl, இங்கு பயன்படுத்தப்படும். ஒரு மூலப்பொருளாகிய CO₂ கண்ணும்புக்கல்லே வெப்பமேற்றிப் பெறப்படும்.

$$CaCO_3 \stackrel{900-1000 \circ C}{\leq} CaO + CO_2$$

வீனவாகும் CaO, நீரேற்றப்படும்பொழுது, Ca (OH)2 பெறப்படும்?

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

உபவீளேவாகிய NH₄Clஐ, Ca(OH)₂ உடன் வெப்பமாக்கும்பொழுது, NH₃ பெறப்படும்; NH₃ மூலப்பொருட்களில் ஒன்றுகப் பயண்படுத்தப்படும்; இதஞைல் இவ்வுற்பத்திக்குத் தேவையான மூலப் பொருட்கள் [கடல்நீர், CO₂, NH₃] இலகுவாகப் பெறக்கூடியதாக இருப்பதால், இம்முறை சிக்கனமானது;

(B) NaOH தயாரிப்பு :

ஆவியாக்கல்மூலம் செறிவாக்கி சுத்திகரிக்கப்பட்ட கடல்நீர் மிண்பகுக்கப்பட்டு NaOH, பெறப்படும். சுத்திகரிக்கப்பட்ட கடல்நீர், மண் வடிகலன்களினூடு வடிக்கப்பட்டு, HCl அமிலத் தால் சமநிலப்படுத்தப்படும். சமநிலப்படுத்தப்பட்ட உப்புநீர், குறிப்பிட்ட கட்டுப்படுத்தப்பட்ட உப்புநீர், குறிப்பிட்ட கட்டுப்படுத்தப்பட்ட வேகத்தில் தொடர்ச்சியாக மின்கலங்களுக்கு ஊட்டப்படும்.

பின்வாயில்கள் :

காபன் – அடுட், உருளேவடிவான நுண்துளேயுள்ள இரும்பு — உதோட்

அடுட்டும் கதோட்டும் நுண்துளே உடைய கண்ஞர் (asbestos) தகடுகளால் பிரிக்கப்பட் டுள்ளது.

யின்வாயி**லில் நிகழும் தாக்கங்க**ள் :

மின்பகுப்பின்பொழுது, சமநிலேயிலிருந்து H+, Cl அயன்கள் அகற்றப்படுவதால் விளேவுக் கரைசல் NaOH ஆகும்.

மிகுதிக் கரைசல் கலத்தின் அடியிஞல் வெளியேற்றப்பட்டு, செறிவாக்கி சேகரிக்கப்படும்.

தத்துவங்கள் :

(i) Na+ அயன்களின் செறிவிலும், H+ அயன்களின் செறிவு மிகவும் குறைவாக இருந்த பொழு திலும், Fe ஐ கதோட்டாகப் பயன்படுத்துவதால் H+ அயன்களுக்கு மிகை அழுத்தம் உண்டாவ தில்லே, எனவே கதோட்டில் H+ அயன்கள் இறக்கப்படும். இதனுல் நீரின் அயனுக்கமும் கூட்டப்படும்.

- (ii) Cl அயன்களின் இறக்க அழுத்தம், ஐதரொட்கில் அயன்களிலும் கூடுதலாக இருந்தபொழு திலும், Cl அயன்களின் செறிவு அதிகமாதலால், இறக்க அழுத்தம் ஐதரொட்கில் அயன் களிலும் குறைக்கப்பட்டு, Cl அயன் அஞேட்டில் இறக்கப்படும்.
- (iii) காபன் அனேட்டாதலால், தாக்கும் திறன் மிகுந்த Cl₂ இவிருந்து பாதுகாக்கப்படுகின்றது.
- (iv) அனேட்டும், கதோட்டும் நுண்துளேத்தகட்டால் [கன்ஞர்] பிரிக்கப்படுவதால், அனேட்டில் விளேவாகும் Cl₂, NaOH உடன் தாக்கமுறுவது தடுக்கப்படும். ஆஞல் இத்தகடுகளினுடாக அயன்கள் கடத்தப்படும்.
- (v) சில கலங்களில், விளேவாகும் Cl_2 , NaOH இல் கரைவதைத் தடுப்பதற்கு வெப்பமாக்குவதன் மூலம் Cl_2 வாயு அகற்றப்படுகின்றது.
- 2. போக்சைட்டு அரைக்கப்பட்டு, அமுக்கத்தின் கீழ், சூடான, செறிந்த NaOH இல் கரைக்கப்படும்.

கரையாத மீதியில், பெரிக் உப்புக்கள், சிலிக்கேற்றுக்கள், தைத்தேனியம் இரு ஒட்சைட்டுக்கள் காணப்படும். விடுவுக்கரைசலே வடிகட்டும்பொழுது, வடிதிரவத்தில் NaAlO₂, கரைசலாகக் காணப்படும் வடிதிரவத்திற்கு சிறிதளவு Al(OH)₃ தூவப்பட்டு, நீரிஞல் ஐதாக்கும்பொழுது, நீர் பகுப்படைந்து Al(OH)₃ உம் NaOH உம் விடுவாகும்.

$$NaAlO_2 + 2H_2O \longrightarrow Al(OH)_3 \downarrow + NaOH.$$

உண்டாகும் NaOH திரும்பவும் பயன்படுத்தப்படும். வீழ்படிவை வடிகட்டி, கழுவி, உலர்த்தி, மாருநிறைக்குச் சூடாக்கும்பொழுது தூயபோக்சைட்டுப் பெறப்படும்.

$$2 \text{ Al(OH)}_3 \xrightarrow{1000^{\circ}\text{C}} \text{Al}_2\text{O}_3 + 3\text{H}_2\text{O}.$$

(C) (i) Al₂O₃ இன் உருகுநி‰் மிகவும் கூடியது [2000°C]: எனவே கூடிய அழுத்தத்தைப் பயன்படுத்தி மின்பகுக்கவேண்டும். ஆஞல் செய்முறையில் இவ்வளவு வெப்பநி‱ையப் பெறக்கூடிய அழுத்தத்தைப் பயன்படுத்துவது சிக்கனமாகாது. எனவே நேரடியாகப் போக்சைட்டை மின்பகுக்கமுடியாது.

Al இன் ஒட்சிசன் நாட்டம் மிகவும் கூடியது, எனவே இதை, கிறந்த தாழ்த்தும் கருவியாகிய கற்கரியாலும் தாழ்த்தமுடியாது. எனவே வெப்பத்தாழ்த்தல் முறைமையும் பயன்படுத்த முடியாது.

(ii) 60% கிறையோஃற்று. 20% CaF₂, 20% Al₂O₃ என்பவற்றின் உருகிய கலகையை உ காபன்—அஞேட், காபன்—கதோட் என்பவற்றைப் பயன்படுத்தி மின்பகுக்கப்படும்; கலத்திம் வெப்பநினே 900 — 1000°C.

அனுகூலம் :

- (i) மின்பகுப்புக் கலவையைப் பயன்படுத்துவதால், பயன்படுத்தப்படும் வெப்ப**நிலே** குறைக்கப் படும். ஏனெனில், கலவையின் உருகுநிலே குறைக்கப்படும்.
- (ii) கலைவையிலுள்ள மற்ற அயன்களும் மின்னேக் கடத்துவதால், கடத்துந்திறன் கூடும்.

எடுக்கவேண்டிய முன்னவதானம்:

- (i) மின்பகுப்பின் பொழுது, தொடர்ச்சியாக Al₂O₃ செலுத்தப்பபடல் வேண்டும். அல்லது Al₂O₃ இன் செறிவு குறையும்பொழுது கரைசலிலுள்ள மற்ற அயன்களும் இறக்கப்படலாம். [நேரத்துடன் Al³⁺இன் செறிவு குறைவதால் இறக்க அழுத்தம் கூடும்.]
- (ii) கிறையோஃற்றின் பிரிகையைக் குறைக்க, குறைந்த மின்னழுத்தத்தையும், கூடிய மிண் னடர்த்திமையையும் பயன்படுத்தல் வேண்டும்.
- (iii) அனேட்டில் O₂ விளேவாக்கப்படுவதால், அனேட் ஒட்சியேற்றப்பட்டுப் பழுதடையும். எனவே இது மாற்றப்படல் வேண்டும்.

கலத்தில் நிகழும் இரசாயனத் தாக்கம்:

அஞேட்டில் :
$$20^-$$
 — $4e$ — \rightarrow O_2 \uparrow கதோட்டில் : Al^{s+} + $3e$ — \rightarrow Al ψ

வீடை:

3. (அ) (i) a கிராம் மூல்கள் B எடுக்கப்பட்டு, வெப்ப**மாக்கியபொழுது, x** கிராம் மூல்கள் பிரி**கை** அடைந்ததெனக் கொள்க. எனவே சமநிலேயில் x கி. மூல் Aயும், x கி. மூல் Cயும் வாயு நிலேயில் காணப்படும். இதைக் கீழ்க்காணும் சமன்பாடு தெரிவிக்கின்றது.

$$\begin{array}{cccc}
B & \Longrightarrow & A + C. \\
a - x & & x & x.
\end{array}$$

எனவே, சமநிலேயிலுள்**ள அமுக்கத்**திற்குக் காரணமான மொத்த மூல் 2 x ஆகும். சம நிலேயில், A, C என்பவற்றின் ப**கு**தி அமுக்கங்களே P_A , P_C என்கை.

$$\therefore P_A = P_C = \frac{x}{2x}$$
. $P = P/2$ enallowing with:

். தாக்கத்தின் சமநிஃமொறிலி Kp = P_A · P_C

$$= P/_2 \cdot P/_2$$

$$\therefore Kp = \frac{P^2}{4}$$

- (ii) ஒரு மனுமோனியைப் பயன்படுத்தி, சமநிலேச் கலவையின் அமுக்கத்தை அளக்கலாம். இவ்வமுக்கத்தை, Kp = P² என்ற சமன்பாட்டில் பிரதியிட்டு, Kp ஐக் கணிக்கலாம்.
- (ஆ) (i) இணேக்கப்பட்டபின், தொகுதியிலுள்ள மொத்த கிராம் மூல்கள் n ஆயின், இலட்சிய வாயுச் சமன்பாட்டின்படி,

$$PV = nRT$$
 $n = PV$
 RT
 $\frac{1.65 \times 8.2}{0.082 \times 300} = 0.55 \text{ (p.s.)}$

குடுவையில் அமுக்கத்திற்குக் காரணமான மூலக் கூறுகள் Aயும் டியும் ஆகும். 300° Kஇல், குடுவையிலுள்ள A, C என்பவற்றின் கிராம் மூல்களின் அளவை N_{a} , N_{c} என்க.

இரு குடுவைகளும், சமகனவளவுடையதும், ஒரே வெப்பநிலேயிலும் இருப்பதால் அவகாத்ரோவின் விதிப்படி.

$$\frac{N_a}{N_c} = \frac{P}{P/10} = 10.$$

$$\therefore N_a = N_b = 0.55 \times \frac{10}{11} = 0.5 \text{ m/s}.$$

$$N_c = 0.55 \times \frac{1}{11} = 0.05 \text{ m/s}.$$

(ii) 300°K இல் A யின் பகுதி அமுக்கத்தை P_A என்க. பகுதியமுக்கம் = மூல்பின்னம் X மொத்த அமுக்கம்

- (iii) குடுவைகள் இணேக்கப்பட்டவுடன், கனவளவு இரு மடங்காக்கப்படுவதால், அமுக்கம் அரை மடங்காக்கப்படும். [வெப்பநிலே மாறிலி]
 ∴ இணேக்கப்படமுன் A உள்ள குடுவையின் அமுக்கம் = P = 1⋅5 × 2
 = 3 வளிமண்டலம்.
- (iv) 600°K க்குச்சூடாக்கும்பொழுது, x மூல் B பிரிகை அடைந்ததென்க: எனவே, சமநிலேயில் (0·5 + X) மூல் A உம், (0·05+X) மூல் C யும் வாயு நிலேயில் காணப் படும். இதைக்கீழ்வரும் சமன்போடு தெரிவிக்கின்றது.

். சமநிலேயிலுள்ள அமுக்கத்திற்குக் காரணமான மொத்த மூல் (0·55+2x)

∴ இலட்சிய வாயுச் சமன்போட்டின்படி.

$$Pv = nRT$$
.

். சமநிலேயிலுள்ள A, B, C என்பவற்றின் கிராம் மூலக்கூற்றளடை முறையே Na, Nb. Nc என்கே.

:
$$N_a = 0.6$$
 whi., $N_b = 0.4$ whi., $N_c = 0.15$ whi.

(v) B ஒரு திண்மமாகையால், இதன் பகுதி அமுக்கம் புறக்கணிக்கப்படலாம். :. P_B = 0

சமநிலேயிலுள்ள A, C என்பவற்றின் பகுதி அமுக்கங்களே முறையே PA, Pc என்க.

$$P_{A} = \frac{0.6}{0.75} \times 4.5 = 3.6$$
 வளிமண்டலம் $P_{C} = \frac{0.15}{0.75} \times 4.5 = 0.9$ வளிமண்டலம்

(vi) சமநிலேயின் Kp = Pa. Pc =
$$3.6 \times 0.9$$
 = 3.24 வளிமண்டையம்²:

(vii) (i)
$$600^{\circ}$$
 K இல் மேற் தாக்கத்திற்கு Kp $=\frac{P^2}{4}$ [P - மொத்த அமுக்கம்]

$$\therefore 3.24 = \frac{P^2}{4}$$

P = 3.6 வளிமண்டலம்.

(ii) 600°Kக்கு வெப்பமாக்கும்பொழுது கூட்டப்பிரிவின் அளவை உ என்க. எனவே சமநிஃயில் 0.5 உமூல் Aயும், 0.5 உமூல் Cயும் காணப்படும்.

$$B = A + C.$$

 $0.5(1-\infty)$ 0.5∞ 0.5∞ .

.. சமநி&லயில், வாயு நிஃலயிலுள்ள மொத்த மூல்கள் ∞
 .. வாயுச்சம்சைபாட்டின்படி,

$$PV = NRT$$

$$N = \infty = \frac{3.6 \times 8.2}{0.082 \times 600}$$

= 0.6

். கூட்டப்பிரிகை வீதம் = 60%

- (iii) A யின் பகுதி அமுக்கத்தை அதிகரிக்கும்பொழுது,
 - (a) சமநிஃமொறிலி மாருது [ஒரு குறிக்கப்பட்ட வெப்பநிஃயில் Kp ஒரு மாறிலி.]
 - (b) சமநிலே பின்னேக்கி நகர் த்தப்படும்.

விடை:

 $m{4}$. (அ) Sஐ செறிந்த H_2SO_4 உடன் வெப்பமாக்கியபொழுது, உண்டான வாயு நீரில் கரைந்து செங்கபில நிறக் கரைசலேக் கொடுத்தது. எனவே S இல் I^- , Br^- என்பன காணப்படலாம்.

கரைசலுக்கு, AgNO_3 நீர்க்கரைசல் சேர்க்கப்பட்டபொழுது, செறிந்த NH_3 இல் கரையாத மஞ்சள்நிற வீழ்படிவு தோன்றியது. ஆகவே S இலுள்ள அமில அயன் I^- ஆகும்.

கற்றயனுக்குப் பரிசோதணே :

கரைசெலுக்கு, ஐதான HCl சேர்த்து, H₂S செலு**த்தப்பட்ட**பொழுது, வீழ்படிவு தோ**ன்ற** வில்ஃ. எனவே கரைசலிலுள்ள கற்றயன் தொகுதி I. தொகுதி IIக்கு உரியதா**காது**.

பெரிசோதனே (ii)இல், NH₄OH மிகையாக இருப்பதால், அமிலம் நடுநிஃுயாக்கப்பட்டு, S[—] அயன்கெளின் செறிவு கூட்டப்படுவதால், கரைசேலிலுள்ள கற்றயன் செல்பைட்டாக வீழ்படி வாக்கப்படும். வீழ்படிவு கரியதாக இருப்பதாக், கரைசெலிலுள்ள கற்றயன் Fe⁺⁺, Fe³⁺, CO⁺⁺, Ni⁺⁺ என்பவற்றில் ஒன்றுக இருக்கலாம்.

செறிந்த HNO₃ சேர்த்து, KSCN சேர்க்கப்பட்டபொழுது, சிவப்பு நிறம் தோன்றவில்ஃல: எனவே Fe⁺⁺, Fe³⁺ என்பன இல்ஃல்.

் CH₃CO₂H, KCl, NaNO₂ என்பவற்றின் நீர்க்குறைசெல்க*ோ*ச் சேர்த்தபொழுது. பிரகாசமான மேஞ்சேள்நிற வீழ்படிவு தோன்றுவதால், ககரைசெலிலுள்ள கற்றயன் CO++ ஆகும்?

S -
$$COI_2$$
 $2 \otimes 0$.
 $2I^- + 2 H_2SO_4 \xrightarrow{} \longrightarrow 2 H_2O + SO_4^- + SO_2 + I_2$
 $CO^{++} + S^- \longrightarrow CoS \downarrow$
 $CO^{++} + 3K^+ + 7NO_2^- + 2H^+ \longrightarrow K_3CO(NO_2)_6 \downarrow + H_2O + NO.$

(ஆ) இக்கரைசலில் பின்வரும் சமநிலேகள் காணப்படும்:

H₂S
$$\stackrel{>}{\leftarrow}$$
 H⁺ + HS⁻ $\stackrel{-}{\leftarrow}$ (i)

(i) வது சம்நிலேயின் அயளுக்கமாறிலி
$$K_1 = \frac{[H^+][HS^-]}{[H_2S]}$$

(ii)
$$K_2 = \frac{[H^+][S^{--}]}{[HS^-]}$$

$$.. K_1 \cdot K_2 = \frac{[H^+]^2[S^{--}]}{[H_2S]} = 1 \cdot 0 \times 10^{-7} \times 1 \cdot 2 \times 10^{-15}$$

$$= 1 \cdot 2 \times 10^{-22}$$

 $m H_2S$ ஒரு மென்ன மிலமாதலால், அதன் அயஞக்கம் குறைவாகக் காணப்படும். m HCl ஒரு வன்ன மிலம்: முற்றுன அயன் நிலேயில் காணப்படும். எனவே $m H^+$ அயன்களின் பொது அயன் விலோவால், $m H_2S$ இன் அயஞக்கம் மேலும் குறைக்கப்படும். ஆகவே பின்வரும் எடுகோள்களே எடுக்கலாம்:

- (i) H₂Sஇன் செறிவில்.மாற்றமில்ஃல. ∴ [H₂S] = 0 · 10 மூல். இலீ ⁻¹
- (ii) கரைசெவிலுள்ள H+ அயன்கள் முழுவதும் HCl இலிருந்து பெறப்பட்டது எனக்கொள்ளலாம்.

$$1 \cdot 2 \times 10^{-22} = \frac{[0 \cdot 01]^2 [S^{-}]}{0:1}$$

$$[S^{-}] = 1 \cdot 2 \times 10^{-19} \text{ (Los) } \text{ (Mos)}$$

$$: [Mn^{++}][S^{--}] = 2 \times 10^{-3} \times 1 \cdot 2 \times 10^{-19} = 2 \cdot 4 \times 10^{-22}$$
 များစဲုး 2×10^{-2} များစဲး 2×10^{-2} များစဲုး 2×10^{-2} များစဲး 2×10^{-2} များစဲ့ 2×10^{-2} များစဲ 2×10^{-2} များစဲ့ 2×10^{-2}

கரைசேவிலுள்ள Mn ++, S என்பவற்றின் செறிவுகளின் பெருக்கம், MnS இன் கரைதிறன் பெருக்கத்திலும் கூடுதலாக இருந்தால் மாத்திரம் Mn++ வீழ்படிவாக்கப்படும். இங்கு குறைவாக இருப்பதால் MnS வீழ்படிவாகாது.

$$[Cu^{++}][S^{--}] = 2 \times 10^{-3} \times 1.2 \times 10^{-19} = 2.4 \times 10^{-22} \text{ this}^2. \text{ QeS}^{-2}$$

$$\therefore$$
 $K_{S'p}$ $CuS < [Cu^{++}][S^{-}]$

Cu++, S அயன்களின் செறிவுகளின் பெருக்கம், கரை திறன் பெருக்கத்திலும் அதிகமாக இருப்பதால், CuS வீழ்படிவாகும்:

B II

an.:

- 5. (a) (i) CH₈: CH₂: CH₂·CH₂·OH
- (ii) CH₃-CH-CH₂OH | CH₈

- (ஆ) (i) Zn | Hg, செறி HCl
 - (ii) (C) $CH_3-CH-CH_2OH$ CH_8
- (E) CH₈-CH-CO₂H

 CH₈
- (9) (i) (D) CH₃-CH₂-CH-CH₃ | OH
- (F) CH₈CH₂-C=0 | | CH₈
- (ii) மூன்று $CH_8 CH_2 CH_4 = CH_2 = CH_8$ C = C H
- C=C/ C=C/

(#) (i) $CH_8 - CO_2 C_2H_5$

(ii) பொறிமுறை ப

$$CH_3-C-OC_2H_5 \longleftrightarrow CH_3-C^{+}-OC_2H_5$$

$$\downarrow (1) CH_2-C-OC_2H_5$$

$$\downarrow (2) H^{+}$$

O O O
$$CH_3 - C - CH_2 - C - OC_2H_5$$

$$-C_2H_5OH - CH_2O OC_2H_5$$

(உ) (i) இரு நிலேகளில் காணப்படும்.

- (ii) கிற்ருே வடிவம் :
 - (a) NaHSO₈ உடன் வெண்பளிங்குருவான கூட்டல்சேர்வையை உண்டாக்கும்.
 - (b) HCN உடன், கருநாட்ட சேர்க்கைத் தாக்கத்திலீடுபட்டு சயனே ஐதரிணேக் கொடுக்கும்.

சுனேல் வடிவம்:

- (a) நீரற்ற நிலேயில் Na உடன், H2 வாயுவைக் கொடுக்கும் >
- (b) உலர்நிஃயில், PCl₅ உடன். வெண்ணிற தூமங்களேக் கொடுக்கும்:
- (c) புரோமின் நீர் அல்லது மூல KMnO4 ஐ நிறநீக்கும்?

விடை:

6: (34) (i) (A)
$$C_6H_5 - NH_2$$
 (ii) (B) $CH_8 - C - CO_2H_5$ (CH₂ OH.

(iii) (a)
$$C_6H_5-NH_2$$
 $\xrightarrow{1\cdot 1} cos NaNO_2$ $C_6H_5-N_2C1$ $\xrightarrow{Na_2SO_3} C_6H_5-N-N-SO_5Na$ $\downarrow Hcl \\ 5-10°C$ $\downarrow 100°C$.

$$C_6H_5-NHNH_2$$
. \longleftarrow $C_6H_5-NHNH_2$ HCl. கணிக்கப்பட்டளவு Cl_2 $\stackrel{\mathcal{B}\dot{\pi}\dot{\pi}}{\longrightarrow}$ $CH_3-CH-COOH$ $\stackrel{\mathcal{B}\dot{\pi}\dot{\pi}}{\longrightarrow}$ $CH_3-CH-COOH$

(ஆ) (i) பீஞேலில் ஒட்சிச**ன் அணுவிலுள்**ள தனிச்சோடி இலத்திருன்க**ள்,** இட**பௌதிக விளேவரல்** பெண்சீன் வளேயத்துக்கு இழக்கப்படும்.

பீஞேலின் பரிவமைப்புக்களே நோக்கும்பொழுது, ஒட்சிசன் அணுவின் இலத்திரன் அடர்த்தி குறைவாகக் காணப்படுகின்றது. எனவே O—H பிணேப்பிலுள்ள இலத்திரன்கள் கூடுதலாக ஒட்சிசன் அணுவை நோக்கி இருப்பதால், ஐதரசன் அணு இலகுவாகப் புரோத்தகை வெளியேறும் நிலேயில் உள்ளது.

பெண்சைல் அல்ககோலில் உள்ள மெதலீன் கூட்டம் ($-\mathrm{CH}_2-$) ஓட்சிசன் அணுவிலுள்ள தனிச்சோடி இலத்திரன்கள் வளேயத்துக்குள் இழக்கப்படுவதைத் தடுக்கும். மேலும், $\mathrm{C}_6\mathrm{H}_5-\mathrm{G}_5$ தொகுதி பிணப்பு இலத்திரன்கள்த் தன் இடத்தை நோக்கிக் கவர்ந்த பொழுதிலும், $\mathrm{C}_6\mathrm{H}_5-\mathrm{CH}_2-$ தொகுதி, தன் இடத்திலிருந்து தள்ளும். எனவே ஓட்சிசன் அணுவின் இலத்திரன் அடர்த்தி கூட்டப்படுவதால், $\mathrm{O}-\mathrm{H}$ பிணப்பு இலத்திரன்கள் ஒட்சிசனே நோக்கி இருக்கும் வீதம் குறைக்கப்படும். எனவே ஐதரசன் அணு, புரோத்தனைக் வெளியேறும் வாய்ப்புக் குறைக்கப்படும்:

ஒரு அமிலம் என்பது, தாக்கவரும் மூலத்திற்கு இலகுவாகப் புரோத்த‱ன வழங்**க வல்ல** தாகும். இந்நிஃ பீனேலில், பென்சைல் அல்ககோலிலும் அதிகமாகையால், பீனேலின் அமில இயல்பு, பென்சைல் அல்ககோலிலும் அதிகமாகும். எனவே பீனேல் №2OH இல் **கரை**யும். பென்சை**ல்** அல்ககோ**ல் கரையா**து.

- (ii) மிகையான AlCla:
 - 1. 1மூல் CH₃COCl உடன் தாக்கமுற்று, பென்சீனுடன் மின்னுட்ட பீரைதியீட்டுத் தாக்கத்தில் ஈடுபடத் தேவையான மின்னுட்டக்கருவியான CH₃ − C⁺ ≈ O ஐ உருவாக்குவதற்கு 1 மூல் AlCl。 பயன்படுத்தப்படும்.

$$CH_8COCI + AlCl_3 - - > CH_8 \stackrel{+}{C} = C + AlCl_4$$

2. இத்தாக்கத்தில் விளேவாகும் அசற்ரே பீணேனுடன், AlCl₂ தாக்கமுற்று சிக்கல் சேர்வையை ஏற்படுத்துகிறது. இதஞல் பிரதியீட்டு விளேவுகள் உண்டாவது தடுக்கப்படும்.

3. இத்தாக்கத்தில் AlCl₈ ஒரு ஊக்கியா**கத்** தொழிற்படும்.

$$\begin{array}{cccc} CH_3 - \overset{+}{C} = O \\ C_6H_6 & \xrightarrow{} & C_6H_5 - COCH_3 + H^+ \\ \hline AlCl_4 + H^+ & \longrightarrow & AlCl_3 + HCl. \end{array}$$

AlCl₃, சிக்கல் சேர்வையாக மாற்றப்படுவதால் ஊக்கலுக்கு AlCl₃ இல்லாது போகும்; இதைத் தவிர்ப்பதற்கு AlCl₃ மிகையாகப் பயன்படுத்தப்படும்.

$$C_6H_5-N_2Cl: \longleftrightarrow C_6H_5\longleftarrow N_2^+-Cl$$

பென்சீன் ஈரசோனியம் குளோரைட்டிலுள்ள C – N பிணேப்பை எடுக்கும்பொழுது, நைதரசண் அணுவின் இலத்திரன் அடர்த்தி குறைந்து காணப்படும். எனவே பிணேப்பு இலத்திரண்கள் கைநதரசன் அணுவால் கவரப்படும். ஆணல் C_6H_5 – தொகுதி பிணேப்பு இலத்திரன்களேத் தண் இடத்தை நோக்கிக் கவரும். இத்னுல் C-N பிணேப்பு உறுதியாக்கப்படுகின்றது. [இங்கு 10°C யிலும் மேற்பட்ட வெப்ப நிலேயில் C-N பிணேப்பு பிரிகை அடையும்.].

$$C_2H_5-N_2Cl$$
: $<->$ C_2H_5 $->$ N_2-Cl

எதயில் ஈரசோனியம் குளோரைட்டிலுள்ள C-N பிணேப்பிலுள்ள நைத**ரசன் அணுவின்** இலத்திரன் அடர்த்தி குறைந்து காணப்படும்; எனவே பிணேப்பு இலத்திரன்கள் நைதரசன் அணுவால் கவரப்படும். மேலும், C₂H₅ — தொகுதியின் தூண்டல் விளேவாலும், பிணேப்பு இலத்திரன்கள் நைதரசன் அணுவை நோக்கித் தள்ளப்படும். எனவே C-N பிணேப்பு உறுதி யற்றதாகின்றது. [இது மிகவும் குறைந்த வெப்பநிலேயிலேயே பிரிகை அடையும்.].

(iii)
$$CH_8 - C = O$$

$$O = CH_8 - C = O$$

அசற்றிக்க**மிலத்தின் ப**ரிவமைப்பில், காபணில் பிணேப்பிலுள்ள ஒட்சிசன் அணு**வின் தூண்டல்** விளேவால், இலத்திரன் அடர்த்தி குறைக்கப்பட்ட காப**னேல்** காபன் அணுவிற்கு O—H பிணேப்பில் ஒட்சிசன் அணுவிலுள்ள தனிச்சோடி இலத்திரன்கள் இழக்கப்படுவதால், காப**ேனல் கா**பன் அணுவின் இலத்திரன் அடர்த்திக் குறைவு குறைக்கப்படும்.

காபன் அணுவின் இலத்திரன் அடர்த்திக் குறைவு கூடும்பொழுது, கருநாட்டத்தகவு அதி கரிக்கும்: இந்நிலே CH₃COOH இல் குறைவாகக் காணப்படுவதால், இது சுருங்கிய கருநாட்டத் தாக்கங்களேக் கொடுக்கும்.

பரிவமைப்பில், O—H பிணேப்பிலுள்ள ஒட்சிசன் அணுவின் இலத்திரன் அடர்த்தி குறைக்கப் படுவதால், O—H பிணேப்பு இலத்திரன்கள் கடுதலாக ஒட்சிசன் அணுவை நாடி இருக் கும். எனவே ஐதரசன் அணு இலகுவாக புரோத்தஞக வெளியேறக்கூடிய நிஃலயில் காணப்படும். ஓரு அமிலம் என்பது இலகுவாக புரோத்தனே வழங்கவல்லதாகும். இந்நிலே CH₃COOHஇல் காணப்படுவதால், இது ஒரு அமிலமாகத் தொழிற்படும்.

அச**ற்**றேமைட்டின் பார்வமைப்பில், காபணல் பிணேப்பிலு**ள்ன** ஒட்சிசனின் தூண்டல் விளேவால். இலத்திரன் அடர்த்தி குறைக்கப்பட்ட காபன்வ் காபன் அணுவிற்கு நைதரசன் அணுவிலுள்ள தனிச்சோடி இலத்திரன்கள் இழக்கப்படுவதால், நைதரசன் அணுவின் இலத்திரன் அடர்த்தி குறைக்கப்படும்.

ஒரு மூலம் என்பது, தாக்கவரும் புரோத்தனுக்கு இலகுவாகத் தனிச்சோடி இலத்திரன்களே வழங்க வல்லதாகும். இந்நிலே அசற்றேமைட்டில் குறைவாகக் காணப்படுவதால், இது ஒரு அதிமென் மூலமாகும்.

விடை:

7: (அ) A. 1முல் A (i) க்கு, 1·1மூல் NaNO2, 3மூல் ஐதான HCl என்பன O-10°C மில் சேர்க்கப்பட்டு, உண்டோகும் விளேவுக்கரைசல் NaOH முன்னிலேயில் பிறேலுடன் இணேக்கும் பொழுது. செம்மஞ்சள் நிறமான ஈரசோ சாயம் பெறப்படும்:

பென்சைல் அல்ககோலாக மாற்றப்படும். இது NaOH இல் கரையாது வீழ்படிவாகக் காணப்படும்.

$$C_6H_5-CH_2NH_2$$
 $\xrightarrow{1:1$ முல் NaNO₂ \longrightarrow $C_6H_5-CH_2OH + N_2 + HCl.$ 3 மூல் HCl.

B. B (i) க்கு, நடுநிலேயான FeCl₃ சேர்க்கப்படும்பொழுது, ஊதா நிற**த்தைக்** கொடுக்கும். இது அமிலங்களால் அகற்றப்படும். B (ii) இல் நிறம் ஒன்றும் கோன்ருது.

அல்லது

B (i) , NaOH இல் கரையும். B (ii) கரையாது வீழ்படிவாகக் காணப்படும். [விடை 6 (i) ஐப் பார்க்க].

(P)
$$CH_3 - C_6H_4 - OH + NaOH - P$$
 (P) $CH_3 - C_6H_4 - ONa + H_2O$.

C. NaOH சேர்க்கும்பொழுது C (ii) இல் உண்டாகும் விளேவுக்கரைசல், வெள்ளி நைத்திரேற் றுடன், அமோனியாவில் கரையுமியல்புடைய வெண்ணிற வீழ்படிவைக் கொடுக்கும்.

$$C_6H_5-CH_2Cl +OH^- \longrightarrow C_6H_5-CH_2OH +Cl^-.$$

$$Ag^+ + Cl^- \longrightarrow AgCl \downarrow$$

$$AgCl + NH_3 \longrightarrow Ag (NH_3)_2 Cl.$$

C (i) இல் விளேவுக் கரைசல் AgNO 3 உடன் வீழ்படிவைக் கொடாது.

D. D (ii) புரோமின் நீரின் செங்கபில நிறத்தை அகற்றும். D (i) நிறநீக்காது.

அல்லது

D (ii) க்கு, மூல KMnO₄ ஐ சேர்க்கும்பொழுது, ஊதாநிறத்திலிருந்து மு**தலில் பச்**சை நிறமாக மா**றிப் பின், கபி**லநிறமாக மாறும்.

$$C_6H_{12} \xrightarrow{\text{Cos}} KMnO_4 \longrightarrow C_6H_{12} \text{ (OH)}_2.$$

ஆனுல் D (i) , மூல $KMnO_4$ உடன் சூடாக்கும்பொழுது மட்டுமே நிறமாற்றத்தை ஏற்படுத்தும்.

E. E (ii) ஐ, மூல KMnO₄ உடன் கொதிக்க வைத்து, அமிலமாக்கி, விளேவுக்கரைசனேக் குளிரவிடும்பொழுது, வெண்ணிற பளிங்குருவான பென்சோயிக்கமிலத்தைக் கொடுக்கும்

$$C_6H_5-CH_3$$
 $\xrightarrow{s\pi p}$ $KMnO_4$ $C_6H_5-COOH.$

E (i) மூல KMnO₄ ஐ சூடாக்கும்பொழுது நிறநீக்கும். ஆணை குளி**ரவிடும்பொ**ழுது வீழ்படிவைக் கொடாது.

(iii) (P)
$$-CH_8-C_6H_4-Cl \xrightarrow{\text{NaOH}} (P)-CH_8-C_6H_4-OH \xrightarrow{\text{Zn} \, g_{\parallel} \, G} \triangle H_5-CH_8$$

$$C_6H_5-CH_2-Cl \leftarrow \longrightarrow C_6H_5-CH_2-Cl$$

எதனேல் சேர் NaOH இல் இதொக்சைட் அயன்கள் காணப்படும்.

டத் தாக்கங்களுக்கு உட்படலாம்.

$$C_2H_5OH + NaOH \longrightarrow C_2H_5ONa + H_2O.$$
 $C_2H_5ONa \longrightarrow C_2H_5O^- + Na^+.$

இதொக்சைட் அன்னயன் சிறந்த கருநாட்டக் கருவி. (இலத்திரன் அடர்த்தி கூடியது.) எனவே இலத்திரன் அடர்த்தி குறைந்த காபன் அணுவைத் தாக்கி, கருநாட்டப் பிரதியீட்டில் ஈடுபட்டு ஈதரைக் கொடுக்கும்.

$$C_{6}H_{5}-\overset{\overset{\leftarrow}{C}H_{2}}{-\overset{\leftarrow}{C}I} \xrightarrow{C_{2}H_{5}\overset{\leftarrow}{O}} C_{6}H_{5}-\overset{\leftarrow}{C}H_{2} \dots C_{1}$$

$$\downarrow C_{2}H_{5}-O$$

$$\downarrow -C^{1}$$

$$C_{6}H_{5}-\overset{\leftarrow}{C}H_{2}-O-C_{2}H_{5}$$

விடை:

8. (4) (B) $C_6H_5 - OH$

(ஆ) Dயின் மூலக்கூற்றுச் சூத்திரம் (C₃H₅O₂)_n என்க.

 \therefore மூலக்கூற்று நிறை $(C_3H_5O_2)_n=73\times 2$.

$$n = 2$$
.

். Dயின் மூலக்கூற்றுச் சூத்திரம் C₆H₁₀O₄

(i) (C)
$$CH_2 - COOH$$
 (E) $CH_2 - C$ (D) $CH_2 - COOCH_3$ $CH_2 - COOCH_3$

(ii)
$$\therefore$$
 (A) $CH_2-COOC_6H_5$
 $CH_2-COOC_6H_5$

(iii) (a)
$$C_6H_5OH \xrightarrow{G \neq p p} HNO_3$$
 (P)-NO₂-C₆H₄-OH

(b)
$$C_6H_5$$
—OH $\xrightarrow{\text{Gsp} \text{HNO}_3 \mid \text{H}_2\text{SO}_4}$ $\xrightarrow{\text{100°C}}$ $(\text{NO}_2)_3$ — C_6H_2 —OH

[2, 4, 6, மூ நைத்ரோ பீனேறு:]

கலைவையை $\mathrm{Na_2CO_3}$ உடன் தாக்கும்பொழுது, C தாக்கமுற்று உப்பாக மாற்றப்படும்: (F)

தாக்கமு*ருது* எஞ்சியிருக்கும் பீனு**ஃ், ஈதரைப் உபயோ**கித்துப் பிரித்தெடுத்து**.** ஆவியாக்கிப் பெறலாம். விளேவுக்கு ஒரு அமிலத்தைச் சேர்த்து நீர்பகுத்**துத் தி**ரும்பவும் ஆவியாக்கும்பொழுது C பெறப்ப**டும்**.

விடை:

C பீலிங்கின் கரைசஃவத் தாழ்த்தியது. எனவே C, CH₂O அல்லது CH₃CHO ஆக 9. இருக்கலாம்.

:. A யில் பின்வரும் கூட்டங்கள் இருக்கலாம்.

ஆனுல் B பீலிங்கிண் கேரைச*ு*லத் தாழ்த்தவி**ல்**லே. எனவே B, அருமேற்றிக்கு அல்டிகைட் அல்லது கீற்ருேன் ஆக இருக்கலாம்.

ஆளுல் B ஐ ஒட்சியேற்ற அமிலம் பெறப்பட்டது. : B ஒரு கீற்ரேன் அல்ல. இதில் இருந்து B, CH₃—C₆H₄ —CHO ஆக இருக்கலாம். அல்லது C₆H₅—CHO ஆக இருக்கலாம். ஆனுல் B யின் ஒட்சியேற்றம். ஒரு மூல அமிலத்தைக் கொடுத்தது.

(a) : (B)
$$C_6H_5$$
 — CHO (C) CH_3 — CHO (A) C_6H_5 — CH = CH — CH_3 · (i) CH_8 — CH = CH · CHO (ii) C_6H_5 — CH = CH · CHO (iii) C_6H_5 — CH₂OH. (iv) C_6H_5 — COONa.

(9) (i)
$$C_6H_5$$
— CH_3 $CCl_4 \mid CrO_2Cl_2$ C_6H_5 — CHO .

(ii)
$$C_6H_5$$
—COOH $\xrightarrow{2 \text{ ori}} \frac{PCl_5}{\triangle H} > C_6H_5$ —COCl $\xrightarrow{H_3 \mid Pd \mid Ba \text{ SO}_4} C_6H_5$ —CHO

(ஈ) D, NaOH இல் கரையும். B NaOH இல் கரையாது. C ஐ. செறி NaOH உடன் சூடாக்கும். பொழுது மஞ்சள் நிறமான குங்குலியம் தோன்றும்.

அல்லது

- D, நடுநிலேயான FeCl₃ உடன். பழுப்பு நிறத்தைக் கொடுக்கும்:
- B, NH₃ சேர் Ag NO₃ உடன் வெள்ளி ஆடியைக் கொடுக்கும்.
 - C, பீலிங்கின் கரைசலுடன் செந்நிற வீழ்படிவைக் கொடுக்கும்.
- (உ) (a) (i) சுயாதீன மூலிகப் பொறிமுறை.
 - (ii) **மின்டுட்ட சேர்க்கைத் தாக்க**ம்.
 - (iii) **மின்ரூட்டப் பிர**தியீட்டுத் தாக்கம்.
 - (b) (i) C_6H_5 — $CH = CH-CH_2Cl$.

(iii) (P) Br
$$-C_6H_4 - CH = CH CH_8$$
, (O) Br $-C_6H_4 - CH = CH - CH_8$.

பீழை திருத்தம்

(இந்நூலே உபபோகிக்குமுன்னதாகவே அவ்வவ் இடத்தில் திருத்திக்கொள்ளவும்)

பக்கம்	விஞ	வரி	பிழை	சரி
8	6 (ஆ) 1		இரு சோடியம்	ஈரசோனிய ம்
10	ப ල ුනි (ii)	5	யரா	பரா
40		3	தான்	தான
40	a (iii)	1	யிரித் து	பிரித்து
40	₽ (iV)	1	ର୍ଘ ଥି ରୀ ଭା କର୍ଗୀ	ର୍ଘ୍ୟ ଥିବା ବ୍ୟ କର୍ଶୀ
43	4 (સુ)	1	2×10 ¹⁸	2×10^{-8}
47	ഖിതഥ (iv)	1	500°C	1380°C
50	ലിലെ 3 (ஈ)	1	$PH = 5 + \omega L - \frac{0.05}{0.05}$	$PH = 5 + \omega L - \frac{0.033}{0.033}$
62	ஆ (1) ലദിഖ	மைப்பில் ம	புராநிஃயில் — உண்டு:	

சேதன இரசாயனம்

வினு — விடைகள்

அலிபாற்றிக்

- 1 A, B, C என்ற மூன்று சமபகுதிய சேர்வைகளின் அனுபவசூத்திரம் C₂H₄O. இவற்றின் ஆவியடர்த்தி 44:
 - (i) சோடாச்சுண்ணும்புடன் நீண்டநேரம் சூடாக்கியபொழுது, A எதேணேக் கொடுத்தது. ஆனுல் Вயும், Cயும் புறப்பேணக் கொடுத்தன.
 - (ii) A நடுநிலேயானது. ஆணுல் Bயும், Cயும் ஒரு மூல அமிலங்கள்.
 - (iii) Вயும், Сயும் இலகுவாக சூரியஒளியில் குளோரீனேற்றப்பட்டன: Bஇன் குளோரீனேற்ற விளேவு [D], டியின் குளோரீனேற்ற விளேவு (E) யிலும், சிறந்த வன்னமிலமாகும்.
 - (/அ) A. B. C என்பவற்றின் கட்டமைப்புக்களே எழுதுக.
 - (ஆ) (i) Bபின் குளோரீனேற்ற தாக்கத்தை, நிபந்தனேகள் அடங்கிய சமனபாட்டால் தருக.
 - (ii) B, C, D, E ஆகியவற்றை அமிலத்திறன் ஏறுவரிசையில் ஒழுங்கு செய்க.
 - (iii) D, Eயிலும் வன்னமிலமாக இருப்பதற்கான காரணத்தைச் சுருக்கமாகத் தருக:
 - (இ) A யின் அதே மூலக்கூற்றுச் சூத்திரத்தை உடைய வேருரு சேர்வை F, NaOH இல் கரைய வில்லே. ஆஞல் ஒரு மணி நேரம் மீளப்பாய்ச்சியபொழுது உண்டான விளேவு அயடோபோம் தாக்கத்தைக் கொடுத்ததுடன், அமில KMnO4 ஐயும் நிறநீக்கியது.
 - (i) F இன் கட்டமைப்புச் சூத்திரத்தைத் தருக.
 - (ii) அயடோபோம் தாக்கத்திற்குக் காரணமான சேர்வையின் கட்டமைப்புச் சூத்திரத்தைத் தருக:
 - (iii) அயடோபோம் தாக்கத்திற்கான சமன்பாட்டைத் தருகு
 - (ஈ) A, மெதயில் மக்னீசியம் புரோமைட்டுடன், ஏற்படுத்தும் தாச்சுத்தின் பொறிமுறைச் சமன்பாட்டை எழுதுக. இங்கு நடைபெறும் தாக்கத்தின் பொறிமுறை என்ன?
 - (உ) பின்வரும் மாற்றீடுகளே நிகழ்த்துகு
 - (i) A \longrightarrow C_2H_5CN
 - (ii) CH₂OH → A.

விடை:

1.
$$A = C_2H_5 - COOCH_3$$
 $B = CH_3 - CH_2 - CH_2 - CO_2H$, $C = CH_3 - CH - CO_2H$

$$C_1$$
 $D = CH_3 - CH_2 - CCl_2 - COOH$, $E = CH_3 - C - COOH$, $F = H - COO - CH - CH_8$
 CH_3

- 2. C₃H₆ NOCl ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய ஒரு நடுநிலேயான சேர்வை P மிற்கு. HNO₂ சேர்க்கப்பட்டபொழுது அமிலம் Q (C₃H₆O₂Cl) பெறப்பட்டது: P, Q என்னும் இரு சேர்வைகளுக்கும் NaOH சேர்க்கப்பட்டபொழுது ஒரே விளேவு R [C₃H₆O₂Na] தோன்றி மது: R இன் அமிலமாக்கல் அயடோபோம் தாக்கத்திற்கு நேர் விடையைக் கொடுக்கும் A ஐ உண்டாக்கியது.
 - (அ) 🥳 R, S என்பவற்றின் கட்டமைப்புக்களேத் தருக:
 - (ii) S ஆனது எத்தனே வடிவத்தில் இருக்கின்றது? அவை யாவை?
 - (iii) நேர் புறப்பீயோனிக் கமிலத்திலிருந்து, \$ ஐ எவ்வாறு தொகுப்பீர்?
 - ஆ) (i) Q இன் கட்டமைப்பு என்ன?
 - (ii) Q ஐ எவ்வாறு, ஒளிக்குத் *தூண்டையே*க் காட்டாத, இருமூல அமிலம் T [C 4 H 6 O 4] ஆக மாற்றுவீர்?
 - (இ) எதனேலுடன் தொடங்கி, எவ்வாறு P ஐத் தொகுப்பீர்?
 - (ஈ) (i) S ஐ எவ்வாறு புறப்பலீன் ஆக மாற்றுவீர்?
 - (ii) P யின் கட்டமைப்பு என்ன?
 - (iii) Pயில், நைதரசன், குளோரின் என்பவை இருப்பதைக் காட்டுவதற்கு, இலசனின் பரிசோதனே தவிர்ந்த வேருரு பரிசோதனே தருக:
 - (உ) (i) Q ஐ எவ்வாறு எதனேல் ஆக மாற்றுவீர்?
 - (ii) உ (i) இல் நடைபெறும் தாக்கம் ஒன்றின் பொறிமுறையை விளக்குகு:

ഷ്ഥെ :

2.
$$P = CH_3 - CH - CONH_2$$
 $Q = CH_3 - CH - CO_2H$; $R = CH_3 - CH - COONa$

Cl

Cl

Cl

OH

 H
 $S = CH_3 - CH - COOH$; $T = CH_3 - C - COOH$

OH

COOH

- 3. A, B என்னும் இரு சமபகுதிய சேர்வைகளின் மூலக்கூற்றுச் சூத்திரம் $C_4H_9NO_2$ இரு சேர்வைகளும் $Na\mid Hg$, அல்ககோல் கலவையைத் தாக்கி உண்டான விளேவுகளுக்கு, அமிலமாக்கப்பட்ட $NaNO_2$ கரைசல் சேர்க்கப்பட்டபொழுது சேர்வைகள் C, D என்பன விளேவாக்கப்பட்டன.
 - (அ) С அயடோபோம் தாக்கத்திற்கு நேர்விடை அளித்தது.
 - (i) Cயின் கட்டமைப்பையும், I. U. C. பெயரையும் தருக.
 - (ii) A என்பது என்ன?
 - iii) அசற்றல்டிகைட்டிவிருந்து, A ஐத் தொகுக்கும் ஒரு முறையைக் கூறுக
 - (ஆ) B வன்மூலம் ஒன்றுடன் தாக்கமுற்று, மூல இயல்புடைய வாயுவொன்றைக் கொடுத்தது.
 - (i) Bயிற்குப் பொருந்தக்கூடிய இரு அமைப்புக்க**ோ**த் தருக.
 - (ii) **Bயிற்கு HNO₂ சேர்த்து உண்டான வினேவை** சூரியஒளி மு**ன்னி**ஃவில் குளோரீனேற்றிய பொழுது, ஒரு குளோரோ பிரதியீட்டு விளேவை மாத்திரம் கொடுத்தது.

B யின் கட்டமைப்பு என்ன?

- (இ) (i) Dயின் கட்டமைப்பைத் தருகு
 - (ii) Dயிலிருந்து புறப்பேனே எவ்வாறு தயாரிப்பீர்?
- (ஈ) C, D என்பவற்றை நீரகற்றி உண்டாகும் விளேவுக்கரைசல்களே வேறுபடுத்தி அறிவதற்கு நீர் செய்யும் இரசாயனத் தொடர்ப் பரிசோதனேகளேத் தருக:
- (உ) அசற்றல்டிகைட்டிவிருந்து தொடங்கி B ஐ எவ்வாறு தொகுப்பீர்?

வിடை:

3.
$$A = CH_8 - CH_2 - C = N - OH$$
 $B = CH_8 - CH - C - NH_2$

$$CH_8$$

$$C = CH_8 - CH_2 - CH - OH$$

$$CH_8$$

$$CH_8$$

$$CH_8$$

$$CH_8$$

- 4. A, B, C என்னும் மூன்று நிரம்பாத சேர்வைகள் Pd ஊக்கி முன்னிஃபில் ஐதரசனேற்றப்பட்ட பொழுது நேர் பியூற்றேனேக் கொடுத்தன. நீரேற்றப்பட்டபொழுது, Aயும் Bயும் ஒரே விளேவு Dஐக் கொடுத்தன. ஆணுல் C ஒரு அல்ககோலே (E) கொடுத்தது. Dஐ PCI 5 உடன் தாக்கியபொழுது வெண்தோமங்கள் தோன்றவில்ஃ.
 - (அ) (i) Dயின் கட்டமைப்பு என்ன?
 - (ii) A, B யிற்குச் சாத்தியமான கட்டமைப்புக்களே க் கருக.
 - (iii) B, சோடியத்துடன் ஒத்த உப்பைக் கொடுக்கவில்லே: ஆயின், Aயின் கட்டமைப்பைத் தருக.
 - (ஆ) (i) C யிற்குச் சாத்தியமான கட்டமைப்புக்களே எழுதுக.
 - (ii) Cஐ புரோமினுடன் தாக்கி உண்டான விளேவுக்கு, அல்ககோல்சேர் பொற்று இயமைத ரொட்சைட்டுச் சேர்க்க A பெறப்பட்டது. ஆயி**ன், Cயின் கட்டமைப்பை**த் தருக.
 - (iii) Cக்கும், Br₂க்கும் இடையே நடைபெறும் தாக்கத்தின் பொறிமுறை எ**ன்**ன?
 - (இ) 🛦 (i) எதனேலிலிருந்து (a) B (b) D ஆகிய சேர்வைகளே எவ்வாறு தயாரிப்பிர்?
 - (ii) எதனேலிலிருந்து Eஐ தொகுக்கும் ஒரு முறையைத் தருக.
 - (ஈ) (i) D, E என்பவற்றை வேறு பிரித்தறிய இரு இரசாயன பரிசோதனேகளேக் கூறுக.
 - (ii) Dஐயும், Eஐயும் கொண்ட கலவையிலிருந்து, எவ்வாறு இரு கூறுகளேயும் வே*ருக்குவீர்?*

4:
$$A = CH_8 - CH_2 - C \equiv CH$$
; $B = CH_8 - C \equiv C - CH_8$; $C = CH_8 - CH_2 - CH = CH_2$

$$D = CH_8 - CH_2 - C = O$$

$$E = CH_8 - CH_2 - CH - CH_8$$

$$OH$$

- 5. மூலக்கூற்றுச் சூத்திரம் $C_4H_6O_2$ ஐ உடைய அமிலம் A ஐ, ஊக்கி முன்னிலேயில் ஐதரச னேற்றியபொழுது, $C_4H_8O_2$ ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய இன்னுமோர் அமிலம் B ஐக் கொடுத்தது. B இன் எதயில் எசுத்தரை, செறிந்த அமோனியாவுடன் சூடாக்கிய பொழுது C உண்டானது. C, Br_2 உடனும், வன்மூலம் ஒன்றுடனும் தாக்கமுற்று D ஐ விளேவாக்கியது. D இற்கு HNO_2 சேர்க்கப்பட்டு, உண்டான விளேவு E, அயடோபோம் தாக்கத்திற்கு நேர்விடை அளித்தது:
 - (அ) (i) E, D, C என்பவற்றின் கட்டமைப்புக்கீளத் தருக.
 - (ii) E ஐ எவ்வாறு பிஞக்கோலாக மாற்றுவீர் என்பதைக் காட்ட நிபந்தனேகள் அடங்கிய சமன்**பா**டுகளேத் தருக:
 - (ஆ) (i) சோடியமை தரொட்சைட்டுடன் தாக்கமுறுத, C யின் அதே மூலக்கூற்றுச் சூத்திரத்தை உடைய சேர்வை F ஐ, 2 மெதயில் புறப்பனல்லிலிருந்து எவ்வாறு பெறுவீர்?
 - (ii) ஆ (i) இற்கான பொறிமுறையைத் தருக.
 - (இ) A, B என்பவற்றின் கட்டமைப்புக்களேத் தருக:
 - (ஈ) C₅H₈O₅ ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய, ஒளிக்குத் தொண்டைவேக்கோட்டாத ஒரு அமிலம் G ஐச் சூடாக்கியபொழுது, இன்னுமோர் அமிலம் H பெறப்பட்டது, H ஒளிக்குத் தூண்டிவேக் காட்டியது. H ஐ, மிகையோன H₂SO₄ உடன் சூடாக்கும்பொழுது A பெறப்பட்டது.
 - (i) H இன் கட்டமைப்பைத் தருக:
 - (ii) G என்பது என்ன?
 - (உ) (i) H (ii) G என்பவற்றிலிருந்து தொடங்கி எவ்வாறு புறப்பசுனுயக் கமிலத்தைத் தயாரிப்பீர்?

5.
$$A = CH_2 = C - CO_2H$$
; $B = CH_3 - CH - COOH$; $C = CH_3 - CH - CONH_2$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_6 CH_8 CH_8 CH_8 CH_8 CH_8 CH_8 $COOH$ $COOH$

- 6: C₄H₈O₂ ஐ மூலக்கூற்றுச் குத்திரமாகவுடைய A என்னும் சேர்வை, அமோனியாவுடன் சூடாக்கப் பட்டு, Bஆக மாற்றப்பட்டது. B ஐ, புரோமினுடனும், வன்மூலம் ஒன்றுடனும் தாக்கிப் பெறப் பட்ட விளேவு C, அமிலமாக்கப்பட்ட NaNO₂ நீர்க்கரைசலுடன் D ஐக் கொடுத்தது. Dஐ நீரகற்ற லுக்கு உட்படுத்தி, ஒலிபீன் E பெறப்பட்டது. E, H₂SO₄ உடன் தாக்கப்பட்டு, உண்டான விளேவை நீர்ப்பகுத்தபொழுது, D உடன் சமபகுதியமாயிருக்கும் சேர்வை F பெறப்பட்டது.
 - (அ) (i) E, F, D என்பவற்றின் கட்டமைப்புச் சூத்திரங்களேத் தருக.
 - (ii) Eஐ, ஓசோன் பகுத்து, உண்டான விளேவுக்கு, வன்மூலம் ஒன்றைச் சேர்க்கும்பொழுது, எத்தனே விளேவுகள் உண்டாகும்? அவற்றின் கட்டமைப்புக்களேத் தருக.
 - (ஆ) (i) சமன்பாடுகள், முக்கிய நிபந்தனேகள் மூலம், Dஐ எவ்வாறு கிளிசரோல் (G) ஆக மாற்றுவீர் என்பதைத் தெரிவிக்க.
 - (ii) E, NaCl முன்னிஃயில், புரோமினுடன் அனுபவிக்கும் தாக்கத்தின் பொறிமுறையைத் தருக.

- (இ) (i) C, B, A என்பவற்றின் கட்டமைப்புக்களேத் தருக:
 - (ii) Bஐ, Cஆக மாற்றலில் ஏற்படும் தாக்கத்திற்கான பொறிமுறையைத் தருக.
- (ஈ) C யினது மூலக்கூற்றுச் சூத்திரத்தையுடைய வேறெரு சேர்வை H, பென்சீன் சல்பனேல் குளோரைட்டுடன் தாக்கமுற்று, NaOH இல் கரையாத வீழ்படிவைத் தருகின்றது,
 - (i) H இன் கட்டமைப்பைத் தருக.
 - (ii) Hஐ, HNO₂ உடன் தாக்கவிடும்பொழுது ஏற்படும் நோக்கஃயும், இந்நோக்கலுக்குக் காரணமாயிருந்த விளேவின் கட்டமைப்பையும் தருக.

வீடை :

6.
$$A = CH_8 - CH_2 - CH_2 - CO_2H$$

$$B = CH_3 - CH_2 - CH_2 - CONH_2$$

$$C = CH_3 - CH_2 - CH_2 - NH_2$$
;

$$D = CH_3 - CH_2 - CH_2OH$$
;

$$E = CH_3 - CH = CH_2$$
;

$$F = CH_8 - CH - OH$$

$$H = CH_8 - CH_2 - NH$$

- CH₈ CH₈
- 7: C₃H₅O₂ஐ அனுபவசூத்திரமாகவுடைய சேர்வை Aஐ, NaOH உடன் தாக்கி, மீதி, முன்ணோய கண வளவிலும அரைவாசி ஆகும்வரை **வடிக்கப்பட்**டது. வடியில் அயடோபோம் தாக்கத்தைக் கொடுக்கும் B என்னும் சேர்வை காணப்பட்டது. B யிற்கு H₂CrO₄ சேர்த்து உண்டான விளேவு C, பீலிங்கின் கரைசஃயும், அமோனியா சேர் AgNO₃ஐயும் தாழ்த்தியது.
 - (அ) B, C என்பவற்றின் கட்டமைப்புக்களேத் தருக.
 - (ஆ) மீதிக்கரைசலே, அமிலமாக்கி ஆவியாக்கும்பொழுது D என்னும் பளிங்குருவான திண்மத்தைக் கொடுத்தது. D ஐ, செறி H_2SO_4 உடன் சூடாக்க உண்டான வாயு வீளேவு, சுண்ணும்பு நீரைப் பால்நிறமாக்கியது. வளியில் நீலநிறச் சுவாஃயுடன் எரிந்தது.
 - (i) D என்னும் சேர்வை என்ன?
 - (ii) Aயின் கட்டமைப்புச் சூத்திரத்தை உய்த்தறிக.
 - (இ) C யின் மேலதிக ஒட்சியேற்றம் விளேவு E ஐக் கொடுத்தது.
 - (i) F. D என்பவற்றுக்கிடையேயுள்ள இயல்புகளில் உள்ள ஒரு முக்கிய வித்தியாசத்தை எடுத் துக் காட்ட ஒரு இரசாயனப் பரிசோதனே தருக: நோக்கல்களேக் குறிப்பிடுக.
 - (ii) இவ்வியல்பில் D உடன் ஒத்திருக்கும் வேறெரு சேதனவுறுப்பு அமிலத்தின் கட்டமைப்பைத் தருக
 - (ச) (i) D ஐ எவ்வாறு எதயின் ஆக மாற்றுவீர்?
 - (ii) CO ஐ மட்டும் காபனேக் கொண்டுள்ள சேர்வையாகத் தொடங்கி, Dயின் தொகுப்பிற்கு ஒரு முறையைத் தருக.

- 7. $A = COOC_2H_5$, $B = C_2H_5OH$, $C = CH_8CHO_1$ $D = H_2C_2O_4$; $E = CH_8COOH$ $COOC_2H_5$
- 8. C₅H₈O₂ ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய சேர்வை Aஐ, ஒசோ**ன்** பகுப்புக்கு **உட்படு**த்தி**ய** பொழுது, C₂H₆O ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய, சேர்வை Вயும் C₂H₂O₂ ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய, அமில இயல்புடைய C உம் பெறப்பட்டது. C தொலன்சின் சோதணப் பொருளுடன் வெள்ளி ஆடியைக் கொடுத்தது. ஆணுல் B கொடுக்கவில்லே.
 - (அ) (i) B, C எ**ன்ப**வற்றின் கட்டமைப்புச் சூத்திரங்களே உய்த்தறிக.
 - (ii) Aஎன்பது என்னை?

- (ஆ) C ஐ, கட்டுப்படுத்தப்பட்ட நிபந்த**ோகளி**ன் கீழ் ஒட்சியேற்றியபொழுது, D என்னும் இரு மூல அமிலம் தோ**ன்**றியது:
 - (i) D என்பது என்ன?
 - (ii) கட்டுப்படுத்தப்பட்ட நிபந்தனே உபயோகிக்கப்பட்டதன் காரணமென்ன?
- (இ) (i) B எவ்வாறு கைத்தொழில் ரீதியாகத் தயாரிக்கப்படுகிறது?
 - (ii) மெதயில் அசற்றலீணே B ஆக மாற்றுவதற்குத் தேவையான சோதீனப்பொருட்களேத் தருக
- (ஈ) **3 மெதயில் பியூற்ற**ேனைவிலிருந்து தொடங்கி, எவ்வாறு Aஐத் தொகுப்பீர்?

8.
$$A = CH_8 - C = CH - CO_2H$$
, $B = CH_8 - C = O$; $C = CHO$; $D = Hl_2C_2O_4$
 CH_3 $COOH$

93 A என்பது காரமான மணமுடைய ஒரு திரவம். Aயின் பகுப்பில் இருந்து இது காபன், ஐதரசன், குளோரீன் என்பவற்றையும், ஓட்சிசணேயும் கொண்டிருக்கலாம் என அறியப்பட்டது:

Aயின் மேல் அமோனியா நீரின் தாக்கம், நடுநிலேயான சேர்வை Bஐ வீளவாக்கியது. B வன்மூலம் ஒன்றையும் புரோமின்யும் தாக்கி, C என்னும் மூலத்தைக் கொடுத்தது. அமிலக்கரைசலில் C, NaNO 2 உடன், நைதரசன் வாயுவையும், அவ்ககோல் Eஐயும் கொடுத்தது, Eயின் மென் ஒட்சி யேற்றம், C2H4O என்னும் மூலக்கூற்றுச் சூத்திரத்தை உடைய சேர்வை Fஐக் கொடுத்தது. அமோனியா சேர் வெள்ளி நைத்திரேற்றுடன் F நேர்விடை அளித்தது.

- (அ) B. F என்பவற்றின் கட்டமைப்புக்களேத் தருக:
- (ஆ) A, B. C என்பவற்றின் கட்டமைப்புக்களேத் தருக.
- (இ) (i) B இ**ன் அ**தே மூலக்கூற்றுச் சூத்திரத் தை உடைய வேறெரு சேர்வை **D**இன் கட்டமைப்பைத் தருக.
 - (ii) B. D என்பவற்றை வேறுபடுத்தி அறிய ஒரு இரசாயனப் பரிசோ*தனே த*ருக.
 - (iii) Fஉடன் தொடங்கி, D ஐத் தொகுக்கும் ஒரு முறையைத் தருக.
- (ஈ) B, C என்பவற்றின் மூல இயல்புகள் வேறுபாடாக இருப்பதற்கான காரணத்தை விளக்குக,
- (உ) (i) Bஐ, C ஆக மாற்றலில் ஏற்படும் தாக்கத்தின் பொறிமுறையைத் தருக:
 - (ii) காபனீரொட்சைட்டுடன் தொடங்கி, Aஐத் தொகுக்கும் ஒரு முறையைத் தேவையான நிபந்தனேகளாலும், சமன்பாடுகளாலும் குறிக்க.

வீடை :

9.
$$A = C_2H_2 COC1$$
; $B = C_2H_5 - CONH_2$; $C = C_2H_5 NH_2$; $D = CH_8 - C = N - OH$ $E = C_2H_5 OH$; $F = CH_8 - CHO$

- 10. A, B என்னும் இரு சமபகுதிக சேர்வைகள் С = 85 71%, H = 15·07%, N = 19·22% என்ற அமைப்பை உடையன. ஆவி அடர்த்தி சுமார் 36·5, A ஐ, NaNO2 | HCl என்பவற்றுடன் வெப்பப்படுத்தியபொழுது, D என்னும் சேர்வை உண்டானது. இது ஒரு மூல அமிலம், E [C4H8O2] ஆக ஒட்சியேற்றப்படலாம். இவ்வமிலத்தைச் சோடாச்சுண்ணும்புடன் சூடாக்கும் பொழுது கிளுத்த ஐதரோகாபன் பெறப்படவில்லே. B ஐ இவ்வாறு செயற்படுத்தியபொழுது F என்னும் சேர்வை தோன்றியது. இதனே ஒட்சியேற்ற அயடோபோம் தாக்கத்தைக் கொடுக்கும் செண்டானது
 - (i) A, B என்பவற்றின் மூலக்கூற்றுச் சூத்திரம் என்ன?
 - (ii) A, B என்பவற்றின் கட்டமைப்புக்களேத் தருக.

- (iii) D, F, G, E என்பவற்றின் கட்டமைப்புக்களேத் தருக.
- (iv) G ஐத் தவிர்ந்த அயடோபோம் தாக்கத்தைத் தரக்கூடிய சேரிவை எது?
- (V) A, Eஆக மாற்றப்படுவதைக் காட்டும் தாக்கத்தை நிபந்தனேகளால் குறிக்குக.
- (vi) B, G ஆக மாற்றப்படுவதைக் காட்டும் தாக்கங்களே நிபந்தணேகளாற் குறிக்குக.
- (vii) A யின் மூலக்கூற்றுச்சூத்திரத்தை உடைய சிறந்த மூலக்கி**ன் கட்டமைப்பை**க் கருக.
- (viii) தே, எவ்வாறு Bஆக மாற்றுவீர்?
- (ix) Dஐ Fஆக எல்வாறு மாற்றுவீர்?
- (x) Dஐயும், Fஐயும் வேறுபடுத்த ஒரு **இரசாயன**த் தாக்கத்தைத் தருக:

10.
$$A = CH_3 CH_2 CH_2 CH_2 NH_2$$

$$E = CH_3 - CH_2 - CH_2 - CO_2H$$

$$F = CH_2 - CH_2 - CH - OH$$

$$G = CH_3 - CH_2 - C = O$$

$$CH_3$$

- 11. A, B என்னும் இரு சேதன திரவங்கள், ஒரே மாதிரியான அமைப்பு அளவை உடையன: $H = 2 \cdot 13\%$, $Br = 85 \cdot 15\%$, $[C = 12, H = 1, Br = 79 \cdot 9]$ $C = 12 \cdot 72\%$.
 - 1. A, B என்பவற்றின் அனுபவ சூத்திரத்தைக் கணிக்க.
 - (அ) Aயும், Bயும் தனித்தனி அல்ககோல் சேர் KOH ஐத் தாக்கி, ஒரே ஐதரோகாபன் Cஐ விளே வாக்கியது.
 - (ஆ) கட்டுப்படுத்தப்பட்ட கவனமான நிபந்தனே (1) இல், Aயும், Bயும் KOH நீர்க்கரைசலுடன் சூடாக்கப்பட்டு, உண்டான விளேவுகள் D, E என்பன, கட்டுப்படுத்தப்பட்ட கவனமான நிபந்தனே (2)இல், ஒட்சியேற்றப்பட்டன. Aயில் இந்நிகழ்வால் விளேந்த அமிலம் F. அமில KMnO4 ஐத் தாழ்த்தியது. ஆனுல் Bயால் வீளேவாக்கப்பட்ட அமிலம் G, அமில KMnO4 ஐத் தாழ்த்தவில்லே.
 - (i) அமிலம் Fஇன் கட்டமைப்பையும் பெயரையும் தருக.
 - (li) F, அமில KMnO4 உடன் அனுபவிக்கும் தாக்கத்தின் சமன்பாட்டை எழுதுக:
 - (iii) Dயின் கட்டமைப்பையும் பெயரையும் தருக
 - (iv) டியின் கட்டமைப்பு என்ன?
 - (v) E, G என்பவற்றின் கட்டமைப்புக்களேத் தருக:
 - (Vi) A, B என்பவற்றின் கட்டமைப்புக்களேத் தருக.
 - (Vii) நிபந்தனே (1)இல், கட்டுப்படுத்தப்பட்ட கவனமான நிபந்தனே ஏன் அவசியமான தென விளக்கு க.
 - (Viji) நிபந்தனே (2) இல், கட்டுப்படுத்தப்பட்ட கவனமான நிபங்தனே ஏன் அவசியமான இதன விளைக்குகை.
 - (ix) டுயில் இருந்து, A, B என்பவற்றைத் தயாரிக்கும் ஒரு முறையை மேல்வாரியாக நிபந்தனே களால் தநுகை.

விடை:

$$B = CH_3 - CH Br_2$$
; $C = CH = CH$

$$C = CH = CH$$

$$D = CH_2 - OH$$

ĊООН

- 12. (i) 69·78% காபணேயும், 11:63% ஐதரசணேயும். மிகுதி ஓட்சிசணேயும், கொண்ட சேர்வை Xஇன் ஆவியடர்த்தி 43, X இன் மூலக்கூற்றுச் சூத்திரத்தை உய்த்தறிக. X எனப்பட்டது, அமல்கமாக்கிய நாகத்தையும், செறி HCl ஐயும் கொண்ட கலவையுடன் தாக்கமுறச் செய்தபொழுது, 2 மெதயில் பியூற்றேன் கிடைத்தது.
 - (ii) இதிலிருந்து X இற்குப் பொருத்தமான இரண்டு சேர்வைகளின் கட்டமைப்புக்கவோத் தருக
 - (iii) (a) X ஐ, NaOH உடனும், புரோமினுடனும் தாக்கியபொழுது மஞ்சள்நிற வீழ்படிவு தோன்றியது: Xஇன் அமைப்பைத் தருக.
 - (b) Xஇன் மூலக்கூற்றுச் சூத்திரத்தை உடைய, அயடோபோம் தாக்கத்தைக் கொடுக்கும், வேளெரு சேர்வை Aயின் அமைப்பையும், பெயரையும் தருக
 - (iv) X இன் மூலக்கூற்றுச் சூத்திரத்தை உடைய சேர்வை B, ஐதரசன் சயணட்டைத் தாக்கி, உருவாக்கிய சேர்வையை ஒளிச்சமபகுதிய கூறுகளாகப் பிரிக்கமுடியாது ஆயின்,
 - (a) Bயின் கட்டமைப்பு என்ன?
 - (b) Bக்கும், ஐதரசன் சயடேடுக்கும் இடையே நிகழும் தாக்கத்தின் பொறிமுறை என்ன?
 - (c) Bஐ, HCN உடன் தாக்கும்பொழுது, உண்டாகும் விளேவை உச்சமாக்க,
 - (i) வன்மையான அமில ஊடகத்தையோ (ii) வன்மையான கார ஊடகத்தையோ பயன் படுத்தல் தவருனது. இக்கருத்தினே முற்ரூக விளக்குக.
 - (v) அசற்ரேடூன்த் தொடங்கு பொருளாகக்கொ**ண்டு, Xஇணத்** தொகுக்கும் ஒரு முறையைத் தருக.

മിതുപ:

- 12 X=CH₃-CH-C=O A=CH₃-CH₂-CH₂-C=O B=CH₃-CH₂-CH₂-CH₃
 CH₃ CH₃
- 13. (i) கீழே குறிக்கப்பட்ட பிணேப்புக்களே உடைய சேதனச் சேர்வை ஒன்றி**ல்** பெயரையும், கட்டமைப்பையும் தருக.
 - (அ) ஒரு இரட்டைப் பிணேப்பு காபன் காபனிற்கிடையில்.
 - (ஆ்) ஒரு மும்மைப் பிணேப்பு காபன் நைதரசனுக்கிடையில்
 - (இ) ஒரு இரட்டைப் பிணேப்பு காபன் ஒட்சிசனுக்கிடையில்
 - (ஈ) ஒரு இரட்டைப் பிணப்பு காபன் நைதரசனுக்கிடையில்
 - (உ) ஒரு இரட்டைப் பிணப்பு நைதரசனுக்கும் ஒட்சிசனுக்குமிடையில்
 - (ஊ) ஒரு மும்மைப் பிணேப்பு நைதரசன் நைதரசனுக்கிடையில்
 - (ii) மேற்படி (i) (அ)இக் குறிப்பிட்ட சேர்வை HBr உடன் ஈடுபடும் தாக்கத்திற்கான பொறி முறையை விளக்குக.
 - (iii) மேற்படி (i) (ஆ) இல் குறிப்பிட்ட சேர்வை, NaOH உடன் தாக்கமுறுமாயின் அதற்கான சமன்பாட்டைத் தரு**க**?
 - (iv) மேற்படி (i) (இ) இல் குறிப்பிட்ட சேர்வை, ஈடுபடும் தாக்கத்தின் பொறிமுறையை ஒரு உதாரணம் கொண்டு விளக்குக.
 - (v) மேற்படி குறிப்பிட்ட எல்லாச் சேர்வைகளேயும் தாழ்த்துவதற்குப் பயன்படுத்தப்பட்ட சோதனேப் பொருட்களேயும் தாக்க நிபந்தனேயையும் தருக.

[ஒவ்வொரு தாக்கத்திலும் பயன்படுத்தப்பட்ட தாழ்த்தும் சருவிகள் வேறுபட்டவையாக இருத்தல் வேண்டும்.]

- 14. A, B, C ஆகியவை C₄H₈ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய, மூன்று சமபகுதிய அல்கீண்கள் ஆகும். 180° Cயில் ஐதான H₂SO₄ உடன் இவற்றைத் தாக்கமுறச் செய்தபொழுது, A, B ஆகியவை இரண்டும் ஒரே அல்ககோஃவையும், C வே ெருரு அல்ககோஃவயும் தருகின்றன:
 - (அ) பின்வருவனவற்றின் கட்டமைப்புக்களேத் தருக.
 - (i) அல்கீண் C.
 - (ii) A, B என்பன தரும் அல்ககோல்.
 - (ஆ) B, ஓசோனுடன் தாக்கமுற்றுப் பெற்ற B யின் ஓசோணேட்டை, H₂ | Pd உடன் வெப்ப படுத்தியபொழுது, 44 ஐ மூலக்கூற்று நிறையாகவுடைய D என்னும் ஒரேஒரு விளேவு மாத்திரம் பெறப்பட்டது.
 - (i) B யின் கட்டமைப்பைத் தருக:
 - (ii) B யின் ஒசனேட்டின் கட்டமைப்பைத் தருக.
 - (இ) D ஐ, அதன் ஒட்சீம் E ஆக மாற்றுவதற்கு, என்ன சோதீனப்பொருள் பொருட்களே உபயோகிப்பீர்?
 - (ஈ) ஒட்சீம் Eயிலிருந்**து, எவ்வாறு அச**ற்றிக்கமில**த்தைப் பெறுவீ**ர்?
 - (உ) அசற்றிக்கமிலம் மாத்திரம் தரப்பட்ட சேதனச் சேர்வையாயின், இத 2 ன எவ்வாறு 2 CH $_{8}$ CO $_{2}$ C $_{2}$ H $_{5}$ ஆக மாற்றுவீர்?

14.
$$A = CH_3 - CH_2 - CH = CH_2$$
; $B = CH_3 - CH = CH CH_3$; $C = CH_3 - C = CH_2$.

 $CH_3 - CH_3 - CH_3$

- 15. C₂H₄O ஐ அனுபவசூத்திரமாகவுடைய A என்னும் நடுநிலேயான சேர்வையின் ஆவியடர்த்தி 44. Aஐ NaOH நீர்க்கரைசலுடன் பலமணிநேரம் மீளப்பாய்ச்சியபொழுது, ஒரு ஏகவினக்கரைசல் பெறப்பட்டது. இக்கரைசல் வடிக்க, வடியில் B என்னும் சேர்வை பெறப்பட்டது. குடுவையிலுள்ள மீதியில் இருந்து. அமிலம் Cயின் உப்பு தனிப்படுத்தப்பட்டது. C, தாழ்த்தும் இயல்புகளேக்
 - (அ) Cயின் கட்டமைப்பு என்ன?
 - (ஆ) B அயடோபோம் தாக்கத்திற்கு நேர்விடை அளித்தது. B, A என்பவற்றின் கட்டமைப்புக்களேத் தருக.
 - (இ) Bஐப் போன்று, அதே மூலக்கூற்றுச் சூத்திரத்தை உடைய D என்னும் வேளுரு சேர்வை PCl₅ உடன் தாக்கமுற்றது.
 - (i) **Dஎன்**பது என்ன?
 - (ii) Dயிலிருந்து Bஐ வேறுபடுத்திக் காண்பதற்கான ஒரு இரசாயனப் பரிசோதனேயைத் தருக.
 - (ஈ) Dஐ, Bஆக எவ்வாறு மாற்றுவீர் என நிபந்தணேகள் அடங்கிய சமன்பாடுகளால் குறிக்க.
 - (உ) மெதேஞேலுடன் தொடங்கி, Aஇன் தொகுப்புக்கு ஒரு முறையைத் தருக.

விடை:

18

சேதன இரசாயனம்

வினு – விடைகள்

அருமற்றிக்

- 16. C₉ H₁₂ O ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய அருமேற்றிக்குச் சேர்வை A ஒட்சியேற்றப்பட்ட பொழுது, சேர்வை B விளேவாக்கப்பட்டது. B பிரடியின் சோதணேப் பொருளுடன் செம்மஞ்சள் நிற வீழ்படிவைக் கொடுத்தது. ஆளுல் பீலிங்கின் கரைசலேத் தாழ்த்தவில்லே. B ஐ, கிளமென் சனின் தாழ்த்தலுக்கு உட்படுத்தியபொழுது, புறப்பையில் பென்சீனே விளேவாகத் தோன்றியது.
 - (அ) 🔰 🎖 க்குச் சாத்தியமான இரு கட்டமைப்புக்களே எழுதுக
 - B அயடோபோம் தாக்கத்திற்கு இன்மை விடை அளித்தது. ஆயின் B, A என்பவற்றின் கட்டமைப்புக்களேத் தருக.
 - (ஆ) 🍞 பென்சல்டிகைட்டிலிருந்து தொடங்கி, A ஐத் தொகுப்பதற்கு ஒரு முறையைத் தருக:
 - (ii) A ஆனது எத்தனே வடிவத்தில் இருக்கின்றது? அவை யாவை?
 - (இ) A ஐ நீரகற்றலுக்கு உட்படுத்தியபொழுது, C என்னும் சேர்வை தோன்றியது?
 - (i) C யின் கட்டமைப்பைத் தருக.
 - (ii) C ஆனது, HBr உடன் அனுபவிக்கும் தாக்கத்தின் பொறிமுறையைத் தருக:
 - ்சு) (i) Cஐ ஒசோ**ன் ப**குத்து, உண்டாகு**ம் வி**ளேவு D[C₇H₆O]இலிருந்து எவ்வாறு பீணல் எதீணத் தயாரிப்பீர்?
 - (i) பென்சீனிலிருந்து B ஐ எவ்வாறு தொகுப்பீர் என்பதை, நிபந்தீனகள் அடங்கிய சமன் பாடுகளால் தெரிவிக்க.

மேல் தாக்கத்திற்கான பொறிமுறையைத் தருக.

வீடை:

16. (A) $C_6H_5-CH-CH_3-CH_8$, (B) $C_6H_6-C-CH_2-CH_8$, (C) $C_6H_5-CH=CH-CH_8$, OH

- (D) C_6H_5-CHO .
- 17. A [C₇H₉N] என்னும் அருமேற்றிக்குச் சேர்வையை ஈரசோத்தாக்கத்திற் குட்படுத்தியபொழுது B என்னும் சேர்வை உண்டானது. B உபபொஸ்போரஸ் அமிலத்துடன் (H₈PO₂) சூடாக்கப் பட்டபொழுது தொலுயீணக் கொடுத்தது. A ஐ அதன் அசற்றயில் பெறுதியாக மாற்றிய பின் காரம் கொண்ட KMnO₄ உடன் ஒட்சியேற்றியபொழுது பெறப்பட்ட விளேவு நீர் பகுக்கப் பட்டபொழுது, அமிலம் C உண்டானது. தொடர்த்தாக்கங்களின்பொழுது C, தலிக்கமிலம் Dஆக மாற்றப்பட்டது.
 - (அ) (i) ஈரசோத்தாக்கத்தின் நிபந்தனேகளேக் குறிப்பிடுக.
 - (ii) A. B, C என்பவற்றின் கட்டமைப்புக்களே உய்த்தறிக.
 - (ஆ) (i) Cஐ, எவ்வாறு Dஆகமோற்றுவீர், [நிபந்தனேகள் தெளிவாகக் குறிப்பிடப்படவேண்டும்.
 - (ii) Aயிலிருந்து எவ்பாறு பீடு‰ைத் தயாரிப்பீர்?

- (இ) அமிலம் C யிலிருந்து எவ்வாறு,
 - (i) மூ புரோமோ பென்சீன் (ii) பிக்கிரிக்கமிலம் (E) என்பவற்றைத் தயாரிப்பீர்? E ஏன் ஒரு வன்மையான அமிலம் எ**ன்பதை** விளக்குக.
- (ஈ) (i) பீஞேலே சலுசாலிக்கமிலமாக மாற்றுவதற்கு. தேவையான நி**பந்**தணேகளோத் தருக
 - (ii)' ஈ (i) இற்கான பொறிமுறையைத் தருக.

வீடை:

- 17; A. (0) $-CH_3 C_6H_4 NH_2$ B. (0) $-CH_3 C_6H_4 N_2Cl$, C. (0) $-COOH C_6H_4 NH_2$
 - D. (O) COOH C_6H_4 COOH
- E₁ $(NO_2)_8 C_6H_2 OH$

(2, 4, 6, மூ நைத்ரோ பீனேல்)

- 18. $C_8H_8O_2$ ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய A,B,C என்னும் மூன்று அருேமற்றிக் சேர்வைகளே, சோடாச்சுண்ணுப்புடன் சூடாக்கியபொழுது, A பென்சீணேக் கொடுத்தது. B உம், C உம் தொலுயீணக் கொடுத்தன. A ஒரு நடுநிலேயான சேர்வை. B யும், C யும் ஒரு மூல அமிலங்கள்.
 - (அ) (i) A என்பது என்ன?
 - (ii) சமன்பாடுகள், முக்கிய நிபந்தனேகள் மூலம் A ஐ எவ்வாறு அனிலீன் ஆக மாற்றுவீர் எனத் தெரிவிக்க.
 - (ஆ) B, சூரியதுளி முன்னிஃயில், துரிதமாகக்குளோரீனேற்றப்பட்டு. உண்டோக்கிய சேர்வையில் 3 குளோரின் அணுக்கள் காணப்பட்டன. இவ்விஃளவு, எளிதில் ஆவியோகும் இரு மூல அமிலம் D ஆக மாற்றப்படக்கூடியது. D ஐச் சூடாக்கும்பொழுது, எளிதில் ஒருநீர் மூலக்கூறை இழந்தது.
 - (i) B யின் கட்டமைப்புச் சூத்திரத்தைத் தருக.
 - (ii) B ஐ D ஆக மாற்றுவதற்குத் தேவையான நிபந்தனேகளேச் சமன்பாடுகளால் குறிக்க.
 - (இ) C ஐ குளோரீனேற்றியபொழுது உண்டான விஃாவின் ஒரு மூலில், இரு குளோரின் அணுக்கள் காணப்பட்டன. இவ்விஃாவு, வன்மையான ஒரு மூல அமிலமாகும்.
 - (i) Cயின் கட்டமைப்பைத் தருக.
 - (ii) C ஐ எவ்வாறு எதயில் பென்சீரைக மாற்றுவீர்?

வீடை:

- **18.** (A) $C_6H_5 COOCH_3$; (B) (O) $-CH_8 C_6H_4 COOH$; (C) $C_6H_5 CH_4 COOH$.
 - (D) $COOH-C_6H_4-COOH$.
- **19**. A $[C_{11}H_{14}]$ என்னும் அருமேற்றிக்கு ஐதரோகாபனே ஓசோன் பகுத்தபொழுது, $B[C_8H_6O]$. $C[C_8H_8O]$ என்னும் இரு விளேவுகள் பெறப்பட்டன. B, NH_8 சேர் வெள்ளி நைத்திறேற்றைத் தாழ்த்தவில்வே. ஆணுல் C தாக்கியபொழுது $D[C_8H_8O_2]$ உண்டானது,
 - (அ) (i) B என்பது என்ன?
 - (ii) B ஆனது, ஐதரசனுடன் எவ்வாறு வேறுபட்ட நிபந்த2ு களில் தாக்கமுறும்?
 - (ஆ) Dஐ, செறிந்த அமோனியாவுடன் சூடாக்கியபொழுது, E என்னும் சேர்வை பெறப்பட்டது; Eஐ NaOH | Br₂ என்பவற்றுடன் தாக்கியபொழுது F என்னும் சேர்வை விளேவாக்கப்பட்டது F [C7H3N] அமோனியாவிலும் அதிமென் மூலமாகும். நிறமாஃப் பரிசோதனேயில் இருந்து F, 1,4 இடங்களில் பிரதியிடப்பட்ட பென்சீன் விளியத்தைக் கொண்டுள்ளதென அறியப் பட்டது.
 - (i) F, E, D, C என்பவற்றின் கட்டமைப்புக்களேத் தருக.
 - (ii) Aஇன் கட்டமைப்பை உய்த்தறிக:

- (இ) F இன் அதே மூலக்கற்றுச்சூத்திரத்தை உடைய வேறு இரு சேர்வைகளேக் கூறி, அவற்றை வேறுபடுத்துவதற்கு இரு இரசாயனப் பரிசோகணேகளேக் கூறுக:
- (ஈ) (i) Fஐ எவ்வாறு D ஆக மோற்றுவீர்?
 - (ii) E யிலிருந்து எவ்வாறு பெண்சீணத் தொகுப்பீர்?

விடை

19: A: (P)
$$CH_8-C_6H_4-CH=C-CH_3$$
| CH₈

B₃
$$CH_8 - C = O$$

$$CH_8$$

C: (P) $CH_8-C_6H_4-CHO$

- D. (P) $CH_3-C_6H_4-COOH$
- E. (P) $CH_3-C_6H_4-CONH_2$
- F. (P) $CH_8-C_8H_4-NH_2$.
- f 20. $f C_7f H_5f N$ ஐ மூலக்கூற்றுச் சூத்திரமாகவுடைய சேர்வை $f A_i$ $f H_2f SO_4$ $f C_2f H_5f OH$ கலவையுடன் கலக்கப்பட்டபொழுது, மூலக்கூற்றுச் சூத்திரம் $\mathbf{C}_9\mathbf{H}_{10}\mathbf{O}_2$ உடைய சேர்வை \mathbf{B} தோன்றியது. B ஆனது செறி NH₃ உடன் குலுக்கப்பட்டபொழுது, C, D என்னும் இரு சேதன விளேவுகளே & கொடுத்தது: C, நைதரசனேக் கொண்டுள்ளது. C ஐ P₂O₅ உடன் சூடாக்கியபொழுது திரும்பவும் A பெறப்பட்டது.
 - (அ) (i) A யின் கட்டமைப்பை உய்த்தறிக.
 - (ii) B, C என்பவற்றின் கட்டமைப்புக்களேக் தருக.
 - (ஆ)′ (i) C உடன் தொடங்கி, எவ்வாறு Aயின் அதே மூலக்கூற்றுச் சூத்திரத்தை உடைய வேளுரு சேர்வை E ஐ தயாரிப்பீர்?
 - (இ) (i) E ஐ ஐதரசனேற்றும்பொழுது, விளேவாக்கப்படும் சேர்வையின் கட்டமைப்பைத் தருக.
 - (ii) அனிலீனிலிருந்து, எவ்வாறு A ஐத் தொகுப்பீர்?
 - (iii) அனிலீனிலிருந்து எவ்வாறு மூ புரோமோ பென்சீ*ண*த் தயாரிப்பீர்?
 - (FF) D யின் ஐதரசன் அகற்றலின் பொழுது உண்டான விளேவுக்கு, ஐதான NaOH சேர்க்கும் பொழுது, சேர்வை G தோன்றியது.
 - (i) NaOH உடன் ஏற்பட்ட தாக்கத்திற்கான பொறிமுறையைத் தருக.
 - (2_) G இவிருந்து ஒரு —OH கூட்டம் அகற்றப்படும்பொழுது (H) உண்டானது.
 - (i) H ஆனது எத்தனே வடிவத்தில் இருக்கின்றது? அவை யாவை?
 - (ii) H இலுள்ள தொழிற்படும் கூட்டங்கள் ஒவ்வொன்றும் இருப்பதற்கான பரிசோத‰ேச் சான்றுகளேக் கோறுக:

- **20.** (A) C_6H_5-CN (B) $C_6H_5-COOC_2H_5$ (C) $C_6H_5-CONH_2$, (D) $C_2H_5OH_3$
- (E) C_6H_5NC (G) $CH_3-CH(OH)$ CH_2 CHO (H) $CH_3-CH=CH-CHO$.

- 21. ஒரு சேதன சேர்வை A யின் அனுபவ சூத்திரம் C₇H₇Cl ஆகும். A, KOH நீர்க்கரைசலுடன் தாக்கமுற்று B என்னும் சேர்வையைக் கொடுத்தது. B யின் மென் ஒட்சியேற்றத்தின் பொழுது பெறப்பட்ட சேர்வை C. ஐதரொட்சில் அமீனுடன் தாக்கமுற்று ஒரு வெணணிற வீழ்படிவு D ஐ உண்டாக்கியது. B யின் மேலதிக ஒட்சியேற்றம் E என்னும் திண்மத்தைக் கொடுத்தது. E, Na₂CO₃ உடன் காபனீரொட்சைட்டைக் கொடுத்தது. E ஐச் சோடாச் சுண்ணும்புடன் வெப்பமாக்கும் பொழுது பென்சேன் பெறப்பட்டது.
 - (அ) (i) E என்பது என்ன?
 - (ii) A, B, C, D என்பவற்றின் கட்டமைப்புச் சூத்திரங்களேத் தருகை.
 - (ஆ) D யின் அதே மூலக்கூற்றுச் சூத்திரத்தை உடைய வேருரு சேர்வை F, NaOH உடன் தாக்கமுற்று மூல இயல்புடைய வாயுவொன்றை வெளியேற்றியது.
 - (i) F இச் கட்டமைப்பைத் தருக.
 - (ii) F இலிருந்து எவ்வாறு A ஐத் தொகுப்பீர்?
 - (இ) தாய் ஐதரோகாபனிலிருந்து A ஐத் தொகுப்பதற்கு ஒரு முறையைத் தருக.
 - (ஈ) (i) C, NaOH உடன் ஏற்படுத்தும் தாக்கமென்ன?
 - (ii) இத்தாக்கம் C ஐ ஒத்த, அலிபற்றிக்குச் சேர்வைகளிலிருந்தும் வேறுபடுவதற்கான காரண மென்ன?
 - (உ) F இலிருந்து பீணேல் ஐதரசீன் தயாரிப்பதற்கான ஒரு முறையை முக்கிய நிபந்தணேகள் அடங்கிய சமன்பாடுகளால் குறிப்பிடுக.

வீடை :

- **21.** (A) $C_6H_5 CH_2Cl$ (B) $C_6H_5 CH_2OH$ (C) $C_6H_5 CHO$ (D) $C_6H_5 CH = N OH$.
 - (E) C_6H_5 -COOH (F) C_6H_5 -CONH₂.

G. C. E ADVANCED LEVE

CHEMISTRY II QUESTION & ANSWERS

+ IN TAMIL+

G. C. E. (A/L) EXAMINATION 1972 - 1973 TEST PAPERS

SAMPLE TEST PAPER (STRUCTURAL - ESSAY)

ORGANIC CHEMISTRY

by

T. SATHTHEESWARAN S/CHEMIST, CEMENT WORKS.

My sincere thanks are due to the Commissioner of Examinations, Department of Education, Ceylon for his permission to include the past question papers of the G. C. E. (A/L). Examinations 1972-1973 in this book

T. SATHTHEESWARAN

Copyright Reserved

Rs 7-75

SOLE DISTRIBUTORS

NORTH-CEYLON TAMIL WORKS PUBLISHING HOUSE

Printed at the Thirumakal Press. Chunnakam